Investigation of Learning Strategies for the SPOT Broker in Power TAC

The Power TAC simulation emphasizes the strategic problems that broker agents face in managing the economics of a smart grid. The brokers must make trades in multiple markets and, to be successful, brokers must make many good predictions about future supply, demand, and prices in the wholesale and tariff markets. In this paper, we investigate the feasibility of using learning strategies to improve the performance of our broker, SPOT. Specifically, we investigate the use of decision trees and neural networks to predict the clearing price in the wholesale market and the use of reinforcement learning to learn good strategies for pricing our tariffs in the tariff market. Our preliminary results show that our learning strategies are promising ways to improve the performance of the agent for future competitions.