Enhanced the photoelectrocatalytic performance of TiO2 nanotube arrays by the synergistic sensitization of Ag-AgBr nanospheres.

[1]  Shanmin Gao,et al.  Solvothermal fabrication and construction of highly photoelectrocatalytic TiO2 NTs/Bi2MoO6 heterojunction based on titanium mesh. , 2019, Journal of colloid and interface science.

[2]  Yuming Cui,et al.  Constructing AgBr/BiOBr microspheres assembled by nanosheets on TiO2 nanotube arrays for the enhanced photoelectrochemical performance , 2019, Separation and Purification Technology.

[3]  Shaohua Zhang,et al.  Fabrication and photoelectrochemical performance of Ag/AgBr sensitized TiO2 nanotube arrays for environmental and energy applications , 2019, Separation and Purification Technology.

[4]  Shanmin Gao,et al.  Preparation of 3D TiO2 nanotube arrays photoelectrode on Ti mesh for photoelectric conversion and photoelectrocatalytic removal of pollutant , 2018, Separation and Purification Technology.

[5]  P. Schmuki,et al.  Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: An electron transfer cascade-based H2 evolution photocatalyst , 2018, Applied Catalysis B: Environmental.

[6]  Z. Zainal,et al.  Fabrication of CdSe nanoparticles sensitized TiO 2 nanotube arrays via pulse electrodeposition for photoelectrochemical application , 2018, Materials Research Bulletin.

[7]  Zhongyu Li,et al.  Enhanced photocatalytic decomposition of an organic dye under visible light with a stable LaFeO3/AgBr heterostructured photocatalyst , 2018, Journal of Physics and Chemistry of Solids.

[8]  Yan Yu,et al.  Novel Ag@AgCl@AgBr heterostructured nanotubes as high-performance visible-light photocatalysts for decomposition of dyes , 2018, Catalysis Today.

[9]  J. Jia,et al.  CdSe modified TiO2 nanotube arrays with Ag nanoparticles as electron transfer channel and plasmonic photosensitizer for enhanced photoelectrochemical water splitting , 2018, Journal of Physics D: Applied Physics.

[10]  Xiaohui Qiu,et al.  A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells , 2018, Advanced materials.

[11]  Yi‐Jun Xu,et al.  Revealing the Double-Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO2 Nanotube Arrays@RGO/MoS2 Heterostructure. , 2018, Small.

[12]  H. Tan,et al.  Photo-assisted synthesis of coaxial-structured polypyrrole/electrochemically hydrogenated TiO2 nanotube arrays as a high performance supercapacitor electrode , 2018, RSC advances.

[13]  J. Matos,et al.  Microwave-assisted synthesis of C-doped TiO 2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells , 2018 .

[14]  B. Cheng,et al.  Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO 2 nanotube arrays for photocatalytic CO 2 reduction , 2018 .

[15]  Zhe Hu,et al.  Plasmon TiO2 nanotube arrays doped with silver nanoparticles act as photo-anode film in solar cells , 2018 .

[16]  Ki-Hyun Kim,et al.  Solar energy: Potential and future prospects , 2018 .

[17]  Wei Zhang,et al.  Enhanced visible-light-active photocatalytic performances on Ag nanoparticles sensitized TiO2 nanotube arrays , 2017 .

[18]  Bin Su,et al.  Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions , 2017 .

[19]  Michael E. Egan Survival Science: Crisis Disciplines and the Shock of the Environment in the 1970s1 , 2017 .

[20]  H. Jiang,et al.  Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries , 2016 .

[21]  Shanmin Gao,et al.  Fabrication of CuInSe2 quantum dots sensitized TiO2 nanotube arrays for enhancing visible light photoelectrochemical performance , 2015 .

[22]  Rencheng Jin,et al.  Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties , 2015 .

[23]  Danzhen Li,et al.  TiO2 nanotube array-graphene-CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability. , 2014, ACS applied materials & interfaces.

[24]  Gang Chen,et al.  Uniform Bi2S3 nanorods-assembled hollow spheres with excellent electrochemical hydrogen storage abilities , 2014 .

[25]  D. Dionysiou,et al.  HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water , 2013 .

[26]  Haifeng Xu,et al.  One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI) , 2012 .

[27]  Xinyong Li,et al.  Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. , 2012, Environmental science & technology.

[28]  Cheng Sun,et al.  Microwave assisted photocatalytic degradation of pentachlorophenol in aqueous TiO2 nanotubes suspension , 2007 .

[29]  Li Wang,et al.  An electrochemiluminescence sensor for the detection of prostate protein antigen based on the graphene quantum dots infilled TiO2 nanotube arrays. , 2019, Talanta.

[30]  D. Assouline,et al.  Quantifying rooftop photovoltaic solar energy potential: A machine learning approach , 2017 .

[31]  D. Dionysiou,et al.  One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI) , 2014 .