Computable total functions on metric algebras, universal algebraic specifications and dynamical systems

Abstract Data such as real and complex numbers, discrete and continuous time data streams, waveforms, scalar and vector fields, and many other functions, are fundamental for many kinds of computation. In the theory of data, such data types are modelled using topological, or metric, many-sorted algebras and continuous homomorphisms. A theory of such topological data types is needed to answer the general questions: 1. What are the computable functions on topological algebras? 2. What methods exist to axiomatically specify functions on topological algebras? 3. Can all computable functions be specified? Such a theory seems to be in its infancy: there are many approaches to computability theory on general and specific spaces, and few approaches to specification theory. In some earlier papers, we have studied the questions 1 and 2 with the needs of data type theory in mind, and built a bridge between computations and specifications to try to answer 3. In this paper, we extend and combine several of our results, to prove new theorems that (i) show the equivalence of some six deterministic or non-deterministic models of computation on various metric algebras and, in particular, on spaces R n of real numbers; (ii) provide finite universal algebraic specifications for all the functions that can be computably approximated on metric algebras and, in particular, on Euclidean n-space R n ; (iii) show the existence of finite universal algebraic specifications of computably approximable finite dimensional deterministic dynamical systems. A technical issue is the localisation of uniform continuity using exhaustions of open sets. We use specifications composed of conditional equations, inequalities and, for convenience, new exhaustion primitives, that define functions uniquely up to isomorphism.

[1]  John C. Shepherdson,et al.  On the Definition of Computable Function of a Real Variable , 1976, Math. Log. Q..

[2]  J. W. de Bakker,et al.  Processes and the Denotational Semantics of Concurrency , 1982, Inf. Control..

[3]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[4]  J. V. Tucker,et al.  Computable functions and semicomputable sets on many-sorted algebras , 2001, Logic in Computer Science.

[5]  N. A. Harman,et al.  Algebraic models of microprocessors architecture and organisation , 1996, Acta Informatica.

[6]  Bakhadyr Khoussainov,et al.  Randomness, Computability, and Algebraic Specifications , 1998, Ann. Pure Appl. Log..

[7]  Jan Willem Klop,et al.  Transfinite Reductions in Orthogonal Term Rewriting Systems , 1995, Inf. Comput..

[8]  W. Rudin Principles of mathematical analysis , 1964 .

[9]  Dieter Spreen,et al.  On effective topological spaces , 1998, Journal of Symbolic Logic.

[10]  J. V. Tucker,et al.  Complete local rings as domains , 1988, Journal of Symbolic Logic (JSL).

[11]  Jan A. Bergstra,et al.  Initial and Final Algebra Semantics for Data Type Specifications: Two Characterization Theorems , 1983, SIAM J. Comput..

[12]  Karl Meinke Topological Methods for Algebraic Specification , 1996, Theor. Comput. Sci..

[13]  Abbas Edalat,et al.  Domains for Computation in Mathematics, Physics and Exact Real Arithmetic , 1997, Bulletin of Symbolic Logic.

[14]  Paul M. B. Vitányi,et al.  Randomness , 2001, ArXiv.

[15]  Erwin Engeler Algorithmic properties of structures , 2005, Mathematical systems theory.

[16]  Viggo Stoltenberg-Hansen,et al.  Concrete Models of Computation for Topological Algebras , 1999, Theor. Comput. Sci..

[17]  Nachum Dershowitz,et al.  Rewrite, Rewrite, Rewrite, Rewrite, Rewrite, . . , 1991, Theor. Comput. Sci..

[18]  Andrzej Grzegorczyk On the definition of computable functionals , 1955 .

[19]  A. vanWijngaarden,et al.  Numerical analysis as an independent science : (bit, nordisk tidskrift for informations-behandling, _6(1966), p 66-81) , 1966 .

[20]  J. V. Tucker,et al.  Examples of Semicomputable Sets of Real and Complex Numbers , 1992, Constructivity in Computer Science.

[21]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[22]  J. V. Tucker,et al.  Computation by 'While' Programs on Topological Partial Algebras , 1999, Theor. Comput. Sci..

[23]  J. V. Tucker,et al.  Hierarchical reconstructions of cardiac tissue , 2002 .

[24]  Michael J. O'Donnell,et al.  Constructivity in Computer Science , 1992, Lecture Notes in Computer Science.

[25]  Carlos José Pereira de Lucena,et al.  Higher order data types , 1980, International Journal of Computer & Information Sciences.

[26]  W. Browder,et al.  Annals of Mathematics , 1889 .

[27]  Markus Roggenbach,et al.  Specifying Real Numbers in CASL , 1999, WADT.

[28]  J. V. Tucker,et al.  Program correctness over abstract data types, with error-state semantics , 1988, CWI monographs.

[29]  J. V. Tucker,et al.  Effective algebras , 1995, Logic in Computer Science.

[30]  John C. Reynolds,et al.  Algebraic Methods in Semantics , 1985 .

[31]  Karl Meinke,et al.  Specification and Verification in Higher-Order Algebra: A Case Study of Convolution , 1993, HOA.

[32]  Karl Meinke Universal Algebra in Higher Types , 1990, ADT.

[33]  José Meseguer,et al.  Final Algebras, Cosemicomputable Algebras, and Degrees of Unsolvability , 1987, Category Theory and Computer Science.

[34]  Erik P. de Vink,et al.  Control flow semantics , 1996 .

[35]  A. Nerode Review: Daniel Lacombe, Extension de la Notion de Fonction Recursive aux Fonctions d'une ou Plusieurs Variables Reelles; Daniel Lacombe, Remarques sur les Operateurs Recursifs et sur les Fonctions Recursives , 1959 .

[36]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[37]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[38]  José Meseguer,et al.  Initiality, induction, and computability , 1986 .

[39]  Vasco Brattka,et al.  Recursive Characterization of Computable Real-Valued Functions and Relations , 1996, Theor. Comput. Sci..

[40]  Dieter Spreen,et al.  Representations versus numberings: on the relationship of two computability notions , 2001, Theor. Comput. Sci..

[41]  J. V. Tucker,et al.  Hierarchies of Spatially Extended Systems and Synchronous Concurrent Algorithms , 1998, Prospects for Hardware Foundations.

[42]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[43]  J. V. Tucker,et al.  Coupled map lattices as computational systems. , 1992, Chaos.

[44]  Y. Moschovakis Recursive metric spaces , 1964 .

[45]  Marian Boykan Pour-El,et al.  On a simple definition of computable function of a real variable-with applications to functions of a complex variable , 1975, Math. Log. Q..

[46]  Michael J. O'Donnell,et al.  Constructivity in Computer Science, Summer Symposium , 1992 .

[47]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[48]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[49]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[50]  Joseph A. Goguen,et al.  Final Algebras, Cosemicomputable Algebras and Degrees of Unsolvability , 1992, Theor. Comput. Sci..

[51]  Vasco Brattka,et al.  Recursive and computable operations over topological structures , 1999 .

[52]  Bernhard Möller On the algebraic specification of infinite objects — ordered and continuous models of algebraic types , 2004, Acta Informatica.

[53]  Jan A. Bergstra,et al.  Equational specifications, complete term rewriting systems, and computable and semicomputable algebras , 1995, JACM.

[54]  Jan A. Bergstra,et al.  Algebraic Specifications of Computable and Semicomputable Data Types , 1987, Theor. Comput. Sci..

[55]  J. V. Tucker,et al.  Computable and continuous partial homomorphisms on metric partial algebras , 2003, Bull. Symb. Log..

[56]  Magne Haveraaen,et al.  Case study on algebraic software methodologies for scientific computing , 2000, Sci. Program..

[57]  A. van Wijngaarden,et al.  Numerical analysis as an independent science , 1966 .

[58]  J. V. Tucker,et al.  Abstract versus concrete computation on metric partial algebras , 2001, TOCL.

[59]  J. V. Tucker,et al.  Abstract computability and algebraic specification , 2002, TOCL.

[60]  Irène Guessarian,et al.  Algebraic semantics , 1981, Lecture Notes in Computer Science.