Electrochemical properties of double wall carbon nanotube electrodes

[1]  Joseph D. Gong,et al.  Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. , 2006, Journal of the American Chemical Society.

[2]  Heli Jantunen,et al.  Inkjet printing of electrically conductive patterns of carbon nanotubes. , 2006, Small.

[3]  Martin Pumera,et al.  Carbon nanotube-epoxy composites for electrochemical sensing , 2006 .

[4]  A. Govindaraj,et al.  Chemically Bonded Ceramic Oxide Coatings on Carbon Nanotubes and Inorganic Nanowires , 2005 .

[5]  M. Pumera,et al.  Glucose biosensor based on carbon nanotube epoxy composites. , 2005, Journal of nanoscience and nanotechnology.

[6]  M. Pumera,et al.  New materials for electrochemical sensing VI: Carbon nanotubes , 2005 .

[7]  C. Banks,et al.  Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. , 2005, The Analyst.

[8]  J. Justin Gooding,et al.  Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing , 2005 .

[9]  M. Grifoni,et al.  Helicity and electron-correlation effects on transport properties of double-walled carbon nanotubes. , 2005, Physical review letters.

[10]  R. R. Moore,et al.  Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. , 2004, Chemical communications.

[11]  M. Dresselhaus,et al.  Coalescence of double-walled carbon nanotubes: Formation of novel carbon bicables , 2004 .

[12]  R. R. Moore,et al.  Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. , 2004, Analytical chemistry.

[13]  Joseph Wang,et al.  Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene , 2004 .

[14]  Federica Valentini,et al.  Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. , 2003, Analytical chemistry.

[15]  E. Flahaut,et al.  Double-walled carbon nanotubes in composite powders. , 2003, Journal of nanoscience and nanotechnology.

[16]  Yuehe Lin,et al.  Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes , 2002 .

[17]  Jun Li,et al.  Novel Three-Dimensional Electrodes: Electrochemical Properties of Carbon Nanotube Ensembles , 2002 .

[18]  Feng Li,et al.  Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane , 2002 .

[19]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[20]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[21]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[22]  G. Whitesides,et al.  Regeneration of nicotinamide cofactors for use in organic synthesis , 1987, Applied biochemistry and biotechnology.

[23]  Martin Pumera,et al.  Microchip Capillary Electrophoresis with a Single-Wall Carbon Nanotube/Gold Electrochemical Detector for Determination of Aminophenols and Neurotransmitters , 2006 .

[24]  Joseph Wang,et al.  Comparison of the Electrochemical Reactivity of Electrodes Modified with Carbon Nanotubes from Different Sources , 2005 .

[25]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[26]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .