High-speed vertical positioning for contact-mode atomic force microscopy

Many popular modes of scanning probe microscopy require a vertical feedback system to regulate the tip-sample interaction. Unfortunately the vertical feedback controller imposes a severe limit on the scan-speed of scanning probe microscopes. In this paper, the foremost bandwidth limitation is identified to be the low-frequency mechanical resonances of the scanner. To overcome this limitation, a dual-stage vertical positioner is proposed. In this work, the bandwidth of a contact-mode atomic force microscope is increased from 83 Hz to 2.7 kHz. This improvement allows image quality to be retained with a speed increase of 33 times, or alternatively, feedback error can be reduced by 33 times if scan speed is not increased.

[1]  I. Mareels,et al.  Dual stage actuator control in hard disk drive - a review , 2003, IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468).

[2]  A. Fleming,et al.  Evaluation of charge drives for scanning probe microscope positioning stages , 2008, 2008 American Control Conference.

[3]  Mervyn J Miles,et al.  A mechanical microscope: High speed atomic force microscopy , 2005 .

[4]  Gus Gurley,et al.  Short cantilevers for atomic force microscopy , 1996 .

[5]  Gil U. Lee,et al.  Scanning probe microscopy. , 2010, Current opinion in chemical biology.

[6]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  Dawn A. Bonnell,et al.  Probing Physical Properties at the Nanoscale , 2008 .

[8]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[9]  Todd Sulchek,et al.  Characterization and optimization of scan speed for tapping-mode atomic force microscopy , 2002 .

[10]  B. Bhushan,et al.  Applied Scanning Probe Methods X , 2008 .

[11]  Todd Sulchek,et al.  High speed tapping mode atomic force microscopy in liquid using an insulated piezoelectric cantilever , 2003 .

[12]  F. Allgöwer,et al.  Simulation of dynamics-coupling in piezoelectric tube scanners by reduced order finite element analysis. , 2008, The Review of scientific instruments.

[13]  N. Jalili,et al.  A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences , 2004 .

[14]  M. J. Rost,et al.  Scanning probe microscopes go video rate and beyond , 2005 .

[15]  C. J. Chen,et al.  Electromechanical deflections of piezoelectric tubes with quartered electrodes , 1992 .

[16]  Yves F. Dufrêne,et al.  Towards nanomicrobiology using atomic force microscopy , 2008, Nature Reviews Microbiology.

[17]  Karl Johan Åström,et al.  Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.

[18]  Chia-Hsiang Menq,et al.  Control of tip-to-sample distance in atomic force microscopy: a dual-actuator tip-motion control scheme. , 2007, The Review of scientific instruments.

[19]  E. Meyer,et al.  Scanning Probe Microscopy , 2021, Graduate Texts in Physics.

[20]  Andrew J. Fleming,et al.  Optimal Periodic Trajectories for Band-Limited Systems , 2009, IEEE Transactions on Control Systems Technology.

[21]  Todd Sulchek,et al.  High-speed tapping mode imaging with active Q control for atomic force microscopy , 2000 .

[22]  K.K. Leang,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.090 HIGH-SPEED SERIAL-KINEMATIC SPM SCANNER: DESIGN AND DRIVE CONSIDERATIONS , 2022 .

[23]  Andrew J. Fleming,et al.  High‐speed serial‐kinematic SPM scanner: design and drive considerations , 2009 .

[24]  L.Y. Pao,et al.  A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[25]  N. D. Rooij,et al.  Atomic force microscopy using an integrated comb-shape electrostatic actuator for high-speed feedback motion , 2000 .

[26]  Todd Sulchek,et al.  Dual integrated actuators for extended range high speed atomic force microscopy , 1999 .

[27]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[28]  M. Horton,et al.  Breaking the speed limit with atomic force microscopy , 2007 .

[29]  T. Ando,et al.  High-speed Atomic Force Microscopy for Capturing Dynamic Behavior of Protein Molecules at Work , 2005 .