Polarimetric Reverberation Mapping in Medium-Band Filters

Earlier, we suggested the “reload” concept of the polarimetric reverberation mapping of active galactic nuclei (AGN), proposed for the first time more than 10 years ago. We have successfully tested this approach of reverberation mapping of the broad emission line on the galaxy Mrk 6. It was shown that such an idea allows one to look at the AGN central parsec structure literally in a new light. However, the method originally assumed the use of spectropolarimetric observations, expensive in terms of telescope time, and implemented on rare large telescopes. Currently, we propose an adaptation of the polarimetric reverberation mapping of broad lines in medium-band filters following the idea of the photometric reverberation mapping, when filters are selected so that their bandwidth is oriented to the broad line and the surrounding continuum near. In this paper, we present the progress status of such monitoring conducted jointly at the Special astrophysical observatory and Asiago Cima Ekar observatory (OAPd/INAF) with support from Rozhen National Astronomical Observatory (NAO), some first results for the most frequently observed AGNs Mrk 335, Mrk 509, and Mrk 817, and the discussion of the future perspectives of the campaign.

[1]  G. Weigelt,et al.  The Dust Sublimation Region of the Type 1 AGN NGC 4151 at a Hundred Microarcsecond Scale as Resolved by the CHARA Array Interferometer , 2022, The Astrophysical Journal.

[2]  C. Wolf,et al.  The LSST Era of Supermassive Black Hole Accretion Disk Reverberation Mapping , 2022, The Astrophysical Journal Supplement Series.

[3]  V. R. Amirkhanyan,et al.  Universal focal reducer for small telescopes , 2021, Astronomische Nachrichten.

[4]  E. Shablovinskaya,et al.  The First Supermassive Black Hole Mass Measurement in Active Galactic Nuclei Using the Polarization of Broad Emission Line Mg ii , 2021, The Astrophysical Journal Letters.

[5]  L. Ho,et al.  Accretion Disk Sizes from Continuum Reverberation Mapping of AGN Selected from the ZTF Survey , 2021, 2109.05036.

[6]  V. Afanasiev,et al.  Linear spectropolarimetric analysis of fairall 9 with VLT/FORS2 , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  A. Bongiorno,et al.  The IBISCO survey. I. Multiphase discs and winds in the Seyfert galaxy Markarian 509 , 2021, Astronomy & Astrophysics.

[8]  Xuheng Ding,et al.  Reverberation Mapping Measurements of Black Hole Masses and Broad-line Region Kinematics in Mrk 817 and NGC 7469 , 2021, The Astrophysical Journal.

[9]  P. Hall,et al.  AGN STORM 2. I. First results: A Change in the Weather of Mrk 817 , 2021, The Astrophysical Journal.

[10]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. XII. Reverberation Mapping Results for 15 PG Quasars from a Long-duration High-cadence Campaign , 2021 .

[11]  V. Afanasiev,et al.  Stokes-Polarimeter for 1-m Telescope , 2021 .

[12]  R. Uklein,et al.  Measurement of the Supermassive Black Hole Masses in Two Active Galactic Nuclei by the Photometric Reverberation Mapping Method , 2020, Astronomy Letters.

[13]  V. Komarov,et al.  Zeiss-1000 SAO RAS: Instruments and Methods of Observation , 2020, Astrophysical Bulletin.

[14]  L. Popović,et al.  Measuring the AGN Sublimation Radius with a New Approach: Reverberation Mapping of Broad Line Polarization , 2020, The Astrophysical Journal.

[15]  P. M. Plewa,et al.  An image of the dust sublimation region in the nucleus of NGC 1068 , 2019, Astronomy & Astrophysics.

[16]  S. Hönig Redefining the Torus: A Unifying View of AGNs in the Infrared and Submillimeter , 2019, The Astrophysical Journal.

[17]  J. Pott,et al.  Optical continuum photometric reverberation mapping of the Seyfert-1 galaxy Mrk509 , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  G. Perrin,et al.  The resolved size and structure of hot dust in the immediate vicinity of AGN , 2019, Astronomy & Astrophysics.

[19]  R. Uklein,et al.  Photometric Reverberation Mapping of AGNs at 0.1 < z <0.8. I. Observational Technique , 2019, Astrophysical Bulletin.

[20]  Paul S. Smith,et al.  Mid-IR Variability and Dust Reverberation Mapping of Low-z Quasars. I. Data, Methods, and Basic Results , 2019, The Astrophysical Journal.

[21]  W. Brandt,et al.  On reverberation mapping lag uncertainties , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  H. A. Le,et al.  Seoul National University AGN Monitoring Project. I. Strategy and Sample , 2019, 1907.00771.

[23]  W. Brandt,et al.  The First Swift Intensive AGN Accretion Disk Reverberation Mapping Survey , 2018, The Astrophysical Journal.

[24]  P. P. van der Werf,et al.  ALMA observations of molecular tori around massive black holes , 2018, Astronomy & Astrophysics.

[25]  V. Afanasiev,et al.  Spectropolarimetry of Seyfert 1 galaxies with equatorial scattering: black hole masses and broad-line region characteristics , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  F. Marin,et al.  Modeling optical and UV polarization of AGNs , 2017, Astronomy & Astrophysics.

[27]  N. E. Sommer,et al.  Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey , 2017, The Astrophysical Journal.

[28]  C. R. Almeida,et al.  Nuclear obscuration in active galactic nuclei , 2017, Nature Astronomy.

[29]  A. Kimball,et al.  HIGH-VELOCITY BIPOLAR MOLECULAR EMISSION FROM AN AGN TORUS , 2016, 1608.02210.

[30]  V. R. Amirkhanyan,et al.  Technique of polarimetric observations of faint objects at the 6-m BTA telescope , 2015, 1510.05269.

[31]  R. Siebenmorgen,et al.  Self-consistent two-phase AGN torus models - SED library for observers , 2015, 1508.04343.

[32]  V. Afanasiev,et al.  POLARIZATION IN LINES—A NEW METHOD FOR MEASURING BLACK HOLE MASSES IN ACTIVE GALAXIES , 2015, 1501.07730.

[33]  Y. Yoshii,et al.  REVERBERATION MEASUREMENTS OF THE INNER RADIUS OF THE DUST TORUS IN 17 SEYFERT GALAXIES , 2014, 1406.2078.

[34]  C. Kochanek,et al.  APPLICATION OF STOCHASTIC MODELING TO ANALYSIS OF PHOTOMETRIC REVERBERATION MAPPING DATA , 2013, 1310.6774.

[35]  Fang Wang,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. I. FIRST RESULTS FROM A NEW REVERBERATION MAPPING CAMPAIGN , 2013, 1310.4107.

[36]  T. Alexander,et al.  Improved AGN light curve analysis with the z-transformed discrete correlation function , 2013, 1302.1508.

[37]  F. Marin,et al.  Modeling optical and UV polarization of AGNs - II. Polarization imaging and complex reprocessing , 2012, 1209.2915.

[38]  D. N. Okhmat,et al.  REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES , 2012, 1206.6523.

[39]  F. Millour,et al.  VLTI/AMBER observations of the Seyfert nucleus of NGC 3783 , 2012, 1204.6122.

[40]  D. N. Okhmat,et al.  A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335 , 2011, 1110.6179.

[41]  C. Westhues,et al.  Photometric AGN reverberation mapping – an efficient tool for BLR sizes, black hole masses, and host-subtracted AGN luminosities , 2011, 1109.1848.

[42]  M. Baes,et al.  Three-dimensional radiative transfer modeling of AGN dusty tori as a clumpy two-phase medium , 2011, 1109.1286.

[43]  S. Paltani,et al.  Multiwavelength campaign on Mrk 509 I. Variability and spectral energy distribution , 2011, 1107.0656.

[44]  Gerd Weigelt,et al.  The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer , 2010, 1012.5359.

[45]  M. C. Bentz,et al.  REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES , 2010, 1006.4160.

[46]  Takayuki Kotani,et al.  Exploring the inner region of type 1 AGNs with the Keck interferometer , 2009, 0911.0666.

[47]  R. Goosmann,et al.  How Polarization and Scattering can reveal Geometries, Dynamics, and Feeding of Active Galactic Nuclei , 2008, 0811.0766.

[48]  N. M. Shakhovskoy,et al.  DISCOVERY OF POLARIZATION REVERBERATION IN NGC 4151 , 2007, 0711.1019.

[49]  Astronomy,et al.  The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements , 2006, astro-ph/0602412.

[50]  B. Peterson,et al.  Reverberation Measurements of the Inner Radius of the Dust Torus in Nearby Seyfert 1 Galaxies , 2005, astro-ph/0511697.

[51]  Prague,et al.  Modeling optical and UV polarization of AGNs. I. Imprints of individual scattering regions , 2005, astro-ph/0507072.

[52]  D. Axon,et al.  Equatorial scattering and the structure of the broad-line region in Seyfert nuclei: evidence for a rotating disc , 2005, astro-ph/0501640.

[53]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[54]  D. Axon,et al.  Seyferts on the edge: polar scattering and orientation‐dependent polarization in Seyfert 1 nuclei , 2004, astro-ph/0401496.

[55]  J. Hough,et al.  A spectropolarimetric atlas of Seyfert 1 galaxies , 2002, astro-ph/0205204.

[56]  A. Sergeev,et al.  Exploration of the solar system with the Two-Channel Focal Reducer at the 2m-RCC telescope of Pik Terskol Observatory , 2000 .

[57]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[58]  M. Malkan,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques , 1999, astro-ph/9905224.

[59]  E. Oliva Wedged double Wollaston, a device for single shot polarimetric measurements , 1997 .

[60]  Claudia Winge,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. IX. Ultraviolet Observations of Fairall 9 , 1997 .

[61]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[62]  J. Miller,et al.  Spectropolarimetry of High-Polarization Seyfert 1 Galaxies: Geometry and Kinematics of the Scattering Regions , 1994 .

[63]  Julian H. Krolik,et al.  Infrared Spectra of Obscuring Dust Tori around Active Galactic Nuclei. II. Comparison with Observations , 1993 .

[64]  Julian H. Krolik,et al.  Infrared spectra of obscuring dust tori around active galactic nuclei. I - Calculational method and basic trends , 1992 .

[65]  Julian H. Krolik,et al.  Molecular tori in Seyfert galaxies - Feeding the monster and hiding it , 1988 .

[66]  R. Siebenmorgen,et al.  Self-consistent two-phase AGN torus models⋆⋆⋆ , 2015 .

[67]  T. Alexander,et al.  Is AGN Variability Correlated with Other AGN Properties?—ZDCF Analysis of Small Samples of Sparse Light Curves , 1997 .

[68]  K. Jockers,et al.  Surface Polarimetry of Comet Tanaka-Machholz 1992d Using a Novel Double Wollaston Prism , 1993 .

[69]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[70]  B. G. Stewart,et al.  Point and interval estimation of the true unbiased degree of linear polarization in the presence of low signal-to-noise ratios , 1985 .

[71]  V. M. Lyutyi,et al.  Rapid variations of H$alpha$ intensity in the nuclei of Seyfert galaxies NGC 4151, 3516, 1068. , 1973 .