Cosmological Measurements with Forthcoming Radio Continuum Surveys
暂无分享,去创建一个
Robert C. Nichol | Gong-Bo Zhao | Ray P. Norris | Matt J. Jarvis | Leiden | University of Hertfordshire | Huub Rottgering | Filipe B. Abdalla | UCL | University of the Western Cape | Mario G. Santos | Toulouse | Will J. Percival | R. Nichol | W. Percival | H. Rottgering | F. Abdalla | D. Bacon | M. Jarvis | R. Norris | U. Hertfordshire | Csiro | Ucl | U. Cape | Centra | A. Raccanelli | C. Cress | CSIRO | David J. Bacon | Alvise Raccanelli | Catherine M. Cress | Jean-Claude Kubwimana | Sam Lindsay | Dominik J. Schwarz ICG Portsmouth | Centre for High Performance Computing | CENTRA | Universitaet Bielefeld | Mário G. Santos | G. Zhao | S. Lindsay | J. Kubwimana | D. J. S. I. Portsmouth | U. Bielefeld
[1] A. Bonaldi,et al. A model for the cosmological evolution of low-frequency radio sources , 2010, 1001.1069.
[2] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[3] Adam D. Myers,et al. Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications , 2008, 0801.4380.
[4] S. Matarrese,et al. Non-Gaussianity from inflation: theory and observations , 2004 .
[5] L. Waerbeke,et al. CARS: The CFHTLS-Archive-Research Survey. III. First detection of cosmic magnification in samples of , 2009, 0906.1580.
[6] A. Kashlinsky,et al. Large-scale structure in the Universe , 1991, Nature.
[7] William H. Press,et al. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .
[8] E. Linder. Exploring the expansion history of the universe. , 2002, Physical review letters.
[9] A. Hopkins,et al. Science with ASKAP , 2008, 0810.5187.
[10] K. Tomita,et al. Second order gravitational effects on CMB temperature anisotropy in {lambda} dominated flat universes , 2007, 0712.1291.
[11] Uros Seljak,et al. Primordial non-Gaussianity from the large-scale structure , 2010, 1003.5020.
[12] C. Baugh. Creating synthetic universes in a computer , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[13] Chris Blake,et al. A velocity dipole in the distribution of radio galaxies , 2002, Nature.
[14] M. Neyrinck,et al. Galaxy Counts on the CMB Cold Spot , 2009, 0911.2223.
[15] D. J. Saikia,et al. EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.
[16] F. Crawford. DETECTING THE COSMIC DIPOLE ANISOTROPY IN LARGE-SCALE RADIO SURVEYS , 2008, 0810.4520.
[17] A. Dobado,et al. Is the CMB cold spot a gate to extra dimensions? , 2008, 0803.0694.
[18] G. Heald,et al. Panoramic Radio Astronomy , 2009, 0911.4018.
[19] I. P'erez-Fournon,et al. HerMES: detection of cosmic magnification of submillimetre galaxies using angular cross-correlation , 2011, 1101.4796.
[20] Eiichiro Komatsu,et al. Hunting for primordial non-Gaussianity in the cosmic microwave background , 2010, 1003.6097.
[21] A. Hamilton. Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .
[22] D. Huterer,et al. Large-Angle Anomalies in the CMB , 2010, 1004.5602.
[23] R. Nichol,et al. Radio galaxies in the 2SLAQ Luminous Red Galaxy Survey - I: The evolution of low-power radio galaxies to z ~ 0.7 , 2006, astro-ph/0612019.
[24] C. Baccigalupi,et al. PRIMORDIAL NON-GAUSSIANITY AND THE NRAO VLA SKY SURVEY , 2010, 1003.3451.
[25] A. Szalay,et al. Bias and variance of angular correlation functions , 1993 .
[26] M. Bartelmann,et al. Weak gravitational lensing , 2016, Scholarpedia.
[27] E. Linder. Model-independent tests of cosmic gravity , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[28] Shirley Ho,et al. Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications , 2008, 0801.0642.
[29] Pablo Fosalba,et al. Error analysis in cross‐correlation of sky maps: application to the Integrated Sachs–Wolfe detection , 2007, astro-ph/0701393.
[30] C. Baccigalupi,et al. Constraining primordial non-Gaussianity with high-redshift probes , 2010, 1007.1969.
[31] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[32] Perturbations of the Quintom Models of Dark Energy and the Effects on Observations , 2005, astro-ph/0507482.
[33] J. Silk,et al. Local Voids as the Origin of Large-Angle Cosmic Microwave Background Anomalies. I. , 2006, astro-ph/0602478.
[34] Domenico Marinucci,et al. Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy , 2006 .
[35] Detection of Cosmic Magnification with the Sloan Digital Sky Survey , 2005, astro-ph/0504510.
[36] Precision measurement of cosmic magnification from 21 cm emitting galaxies , 2005, astro-ph/0504551.
[37] Gong-Bo Zhao,et al. Searching for modified growth patterns with tomographic surveys , 2008, 0809.3791.
[38] Joeri van Leeuwen,et al. Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution , 2009 .
[39] S. White,et al. An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.
[40] S. Cole,et al. Biased clustering in the cold dark matter cosmogony , 1989 .
[41] Gong-Bo Zhao,et al. Probing dark energy dynamics from current and future cosmological observations , 2009, 0908.1568.
[42] L. Miller,et al. A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes , 2008, 0805.3413.
[43] Xiulian Wang,et al. Dark energy constraints from the cosmic age and supernova , 2005 .
[44] J. Silk,et al. A redshift survey towards the cosmic microwave background cold spot , 2010 .
[45] D. Huterer,et al. Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.
[46] M. Halpern,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES? , 2010, 1001.4758.
[47] E. Greisen,et al. The NRAO VLA Sky Survey , 1996 .
[48] N. Bartolo,et al. How the scalar field of unified dark matter models can cluster , 2008, 0807.1020.
[49] R. Nichol,et al. Probing modifications of general relativity using current cosmological observations , 2010, 1003.0001.
[50] Modelling galaxy clustering at high redshift , 1997, astro-ph/9712184.
[51] M. S. Burns,et al. SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.
[52] COSMIC EVOLUTION OF RADIO SELECTED ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD , 2009 .
[53] F. Abdalla,et al. Forecasts for dark energy measurements with future H i surveys , 2009, 0905.4311.
[54] Shea Brown,et al. Extragalactic Radio Sources and the WMAP Cold Spot , 2007, 0704.0908.
[55] Magnification-temperature correlation: The dark side of integrated Sachs-Wolfe measurements , 2006, astro-ph/0611539.
[56] W. Percival,et al. Interpreting large-scale redshift-space distortion measurements , 2011, 1102.1014.
[57] G. Ellis,et al. On the expected anisotropy of radio source counts , 1984 .
[58] Ravi K. Sheth Giuseppe Tormen. Large scale bias and the peak background split , 1999 .
[59] N. Turok,et al. Looking for a cosmological constant with the Rees-Sciama effect. , 1996, Physical review letters.
[60] Huub Röttgering,et al. LOFAR, a new low frequency radio telescope , 2003 .
[61] M. Neyrinck,et al. GALAXY COUNTS ON THE COSMIC MICROWAVE BACKGROUND COLD SPOT , 2010 .
[62] Matt J. Jarvis,et al. The cosmic evolution of low-luminosity radio sources from the Sloan Digital Sky Survey Data Release 1 , 2004 .
[63] Max Tegmark,et al. Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.
[64] Tracking dark energy with the integrated sachs-wolfe effect : Short and long-term predictions , 2005, astro-ph/0506396.
[65] A. Szalay,et al. The Baryonic Acoustic Feature and Large-Scale Clustering in the SDSS LRG Sample , 2009, 0908.2598.
[66] Ofer Lahav,et al. Excess clustering on large scales in the MegaZ DR7 photometric redshift survey. , 2011, Physical review letters.
[67] Carlo Baccigalupi,et al. The high redshift Integrated Sachs-Wolfe effect , 2009, 0907.4753.
[68] Alexander G. Gray,et al. High redshift detection of the integrated Sachs-Wolfe effect , 2006 .
[69] L. Verde,et al. The Abundance of High-Redshift Objects as a Probe of Non-Gaussian Initial Conditions , 2000, astro-ph/0001366.
[70] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[71] R. Durrer,et al. Dark energy and dark gravity: theory overview , 2007, 0711.0077.
[72] M. Rees,et al. Large-scale Density Inhomogeneities in the Universe , 1968, Nature.
[73] Mark C. Neyrinck,et al. An Imprint of Superstructures on the Microwave Background due to the Integrated Sachs-Wolfe Effect , 2008, 0805.3695.
[74] L. Moscardini,et al. Redshift evolution of clustering , 1996, astro-ph/9608004.
[75] F. Abdalla,et al. Probing dark energy with baryonic oscillations and future radio surveys of neutral hydrogen , 2004, astro-ph/0411342.
[76] S. Matarrese,et al. CMB-Galaxy correlation in Unified Dark Matter Scalar Field Cosmologies , 2011, 1102.0284.
[77] M. Jarvis,et al. An infrared–radio simulation of the extragalactic sky: from the Square Kilometre Array to Herschel , 2010, 1002.1112.
[78] M. Jarvis,et al. The cosmic evolution of low-luminosity radio sources from the SDSS DR1 , 2004, astro-ph/0405080.
[79] Robert Crittenden,et al. A correlation between the cosmic microwave background and large-scale structure in the Universe , 2004, Nature.
[80] E. Bertschinger,et al. Distinguishing modified gravity from dark energy , 2008, 0801.2431.
[81] P. Adshead,et al. Gauge fields and inflation: Chiral gravitational waves, fluctuations, and the Lyth bound , 2013, 1301.2598.
[82] M. Fukugita,et al. Measuring the galaxy–mass and galaxy–dust correlations through magnification and reddening , 2009, 0902.4240.
[83] R. Fisher,et al. The Logic of Inductive Inference , 1935 .
[84] A. Szalay,et al. THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE , 2010 .
[85] R. Sachs,et al. Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .
[86] S. Matarrese,et al. A reassessment of the evidence of the Integrated Sachs–Wolfe effect through the WMAP–NVSS correlation , 2008, 0802.0084.
[87] M. Hobson,et al. A Cosmic Microwave Background Feature Consistent with a Cosmic Texture , 2007, Science.
[88] Christopher Hirata,et al. Constraints on local primordial non-Gaussianity from large scale structure , 2008 .
[89] P. Vielva,et al. Detection of a non‐Gaussian spot in WMAP , 2004 .
[90] Adam D. Myers,et al. Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.
[91] M. Jarvis,et al. The evolution of radio sources in the UKIDSS‐DXS–XMM‐LSS field , 2010, 1012.3020.
[92] N. Aghanim,et al. Implications of bias evolution on measurements of the integrated Sachs–Wolfe effect: errors and biases in parameter estimation , 2009, 0903.4288.
[93] T. Giannantonio,et al. Detectability of a phantom-like braneworld model with the integrated Sachs-Wolfe effect , 2008, 0803.2238.
[94] Y. Zeldovich,et al. The interaction of matter and radiation in a hot-model universe , 1969 .