Cosmological Measurements with Forthcoming Radio Continuum Surveys

We present forecasts for constraints on cosmological models which can be obtained by forthcoming radio continuum surveys: the wide surveys with the LOw Frequency ARray (LOFAR), Australian Square Kilometre Array Pathfinder (ASKAP) and th e Westerbork Observations of the Deep APERTIF Northern sky (WODAN). We use simulated catalogues appropriate to the planned surveys to predict measurements obtained with the source auto-correlation, the crosscorrelation between radio sources and CMB maps (the Integrated Sachs-Wolfe effect), the cross-correlation of radio sources with foreground object s due to cosmic magnification, and a joint analysis together with the CMB power spectrum and supernovae. We show that near future radio surveys will bring complementary measurements to other experiments, probing different cosmological volumes, and having different systematics. Our results show that the unprecedented sky coverage of these surveys combined should provide the most significant measurement yet of the Integrated Sachs-Wolfe effect. In addition, we show that using the ISW effect will significantly tighten constraints on modifie d gravity parameters, while the best measurements of dark energy models will come from galaxy auto-correlation function analyses. Using the combination of EMU and WODAN to provide a full sky survey, it will be possible to measure the dark energy parameters with an uncertainty of {σ(w0) = 0.05, σ(wa) = 0.12} and the modified gravity parameters {σ(η0) = 0.10, σ(µ0) = 0.05}, assuming Planck CMB+SN(current data) priors. Finally, we show that radio surveys would detect a primordial non-Gaussianity of fNL = 8 at 1-σ and we briefly discuss other promising probes.

[1]  A. Bonaldi,et al.  A model for the cosmological evolution of low-frequency radio sources , 2010, 1001.1069.

[2]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[3]  Adam D. Myers,et al.  Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications , 2008, 0801.4380.

[4]  S. Matarrese,et al.  Non-Gaussianity from inflation: theory and observations , 2004 .

[5]  L. Waerbeke,et al.  CARS: The CFHTLS-Archive-Research Survey. III. First detection of cosmic magnification in samples of , 2009, 0906.1580.

[6]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[7]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[8]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[9]  A. Hopkins,et al.  Science with ASKAP , 2008, 0810.5187.

[10]  K. Tomita,et al.  Second order gravitational effects on CMB temperature anisotropy in {lambda} dominated flat universes , 2007, 0712.1291.

[11]  Uros Seljak,et al.  Primordial non-Gaussianity from the large-scale structure , 2010, 1003.5020.

[12]  C. Baugh Creating synthetic universes in a computer , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Chris Blake,et al.  A velocity dipole in the distribution of radio galaxies , 2002, Nature.

[14]  M. Neyrinck,et al.  Galaxy Counts on the CMB Cold Spot , 2009, 0911.2223.

[15]  D. J. Saikia,et al.  EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.

[16]  F. Crawford DETECTING THE COSMIC DIPOLE ANISOTROPY IN LARGE-SCALE RADIO SURVEYS , 2008, 0810.4520.

[17]  A. Dobado,et al.  Is the CMB cold spot a gate to extra dimensions? , 2008, 0803.0694.

[18]  G. Heald,et al.  Panoramic Radio Astronomy , 2009, 0911.4018.

[19]  I. P'erez-Fournon,et al.  HerMES: detection of cosmic magnification of submillimetre galaxies using angular cross-correlation , 2011, 1101.4796.

[20]  Eiichiro Komatsu,et al.  Hunting for primordial non-Gaussianity in the cosmic microwave background , 2010, 1003.6097.

[21]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[22]  D. Huterer,et al.  Large-Angle Anomalies in the CMB , 2010, 1004.5602.

[23]  R. Nichol,et al.  Radio galaxies in the 2SLAQ Luminous Red Galaxy Survey - I: The evolution of low-power radio galaxies to z ~ 0.7 , 2006, astro-ph/0612019.

[24]  C. Baccigalupi,et al.  PRIMORDIAL NON-GAUSSIANITY AND THE NRAO VLA SKY SURVEY , 2010, 1003.3451.

[25]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[26]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[27]  E. Linder Model-independent tests of cosmic gravity , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Shirley Ho,et al.  Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications , 2008, 0801.0642.

[29]  Pablo Fosalba,et al.  Error analysis in cross‐correlation of sky maps: application to the Integrated Sachs–Wolfe detection , 2007, astro-ph/0701393.

[30]  C. Baccigalupi,et al.  Constraining primordial non-Gaussianity with high-redshift probes , 2010, 1007.1969.

[31]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[32]  Perturbations of the Quintom Models of Dark Energy and the Effects on Observations , 2005, astro-ph/0507482.

[33]  J. Silk,et al.  Local Voids as the Origin of Large-Angle Cosmic Microwave Background Anomalies. I. , 2006, astro-ph/0602478.

[34]  Domenico Marinucci,et al.  Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy , 2006 .

[35]  Detection of Cosmic Magnification with the Sloan Digital Sky Survey , 2005, astro-ph/0504510.

[36]  Precision measurement of cosmic magnification from 21 cm emitting galaxies , 2005, astro-ph/0504551.

[37]  Gong-Bo Zhao,et al.  Searching for modified growth patterns with tomographic surveys , 2008, 0809.3791.

[38]  Joeri van Leeuwen,et al.  Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution , 2009 .

[39]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[40]  S. Cole,et al.  Biased clustering in the cold dark matter cosmogony , 1989 .

[41]  Gong-Bo Zhao,et al.  Probing dark energy dynamics from current and future cosmological observations , 2009, 0908.1568.

[42]  L. Miller,et al.  A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes , 2008, 0805.3413.

[43]  Xiulian Wang,et al.  Dark energy constraints from the cosmic age and supernova , 2005 .

[44]  J. Silk,et al.  A redshift survey towards the cosmic microwave background cold spot , 2010 .

[45]  D. Huterer,et al.  Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.

[46]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES? , 2010, 1001.4758.

[47]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[48]  N. Bartolo,et al.  How the scalar field of unified dark matter models can cluster , 2008, 0807.1020.

[49]  R. Nichol,et al.  Probing modifications of general relativity using current cosmological observations , 2010, 1003.0001.

[50]  Modelling galaxy clustering at high redshift , 1997, astro-ph/9712184.

[51]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[52]  COSMIC EVOLUTION OF RADIO SELECTED ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD , 2009 .

[53]  F. Abdalla,et al.  Forecasts for dark energy measurements with future H i surveys , 2009, 0905.4311.

[54]  Shea Brown,et al.  Extragalactic Radio Sources and the WMAP Cold Spot , 2007, 0704.0908.

[55]  Magnification-temperature correlation: The dark side of integrated Sachs-Wolfe measurements , 2006, astro-ph/0611539.

[56]  W. Percival,et al.  Interpreting large-scale redshift-space distortion measurements , 2011, 1102.1014.

[57]  G. Ellis,et al.  On the expected anisotropy of radio source counts , 1984 .

[58]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[59]  N. Turok,et al.  Looking for a cosmological constant with the Rees-Sciama effect. , 1996, Physical review letters.

[60]  Huub Röttgering,et al.  LOFAR, a new low frequency radio telescope , 2003 .

[61]  M. Neyrinck,et al.  GALAXY COUNTS ON THE COSMIC MICROWAVE BACKGROUND COLD SPOT , 2010 .

[62]  Matt J. Jarvis,et al.  The cosmic evolution of low-luminosity radio sources from the Sloan Digital Sky Survey Data Release 1 , 2004 .

[63]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[64]  Tracking dark energy with the integrated sachs-wolfe effect : Short and long-term predictions , 2005, astro-ph/0506396.

[65]  A. Szalay,et al.  The Baryonic Acoustic Feature and Large-Scale Clustering in the SDSS LRG Sample , 2009, 0908.2598.

[66]  Ofer Lahav,et al.  Excess clustering on large scales in the MegaZ DR7 photometric redshift survey. , 2011, Physical review letters.

[67]  Carlo Baccigalupi,et al.  The high redshift Integrated Sachs-Wolfe effect , 2009, 0907.4753.

[68]  Alexander G. Gray,et al.  High redshift detection of the integrated Sachs-Wolfe effect , 2006 .

[69]  L. Verde,et al.  The Abundance of High-Redshift Objects as a Probe of Non-Gaussian Initial Conditions , 2000, astro-ph/0001366.

[70]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[71]  R. Durrer,et al.  Dark energy and dark gravity: theory overview , 2007, 0711.0077.

[72]  M. Rees,et al.  Large-scale Density Inhomogeneities in the Universe , 1968, Nature.

[73]  Mark C. Neyrinck,et al.  An Imprint of Superstructures on the Microwave Background due to the Integrated Sachs-Wolfe Effect , 2008, 0805.3695.

[74]  L. Moscardini,et al.  Redshift evolution of clustering , 1996, astro-ph/9608004.

[75]  F. Abdalla,et al.  Probing dark energy with baryonic oscillations and future radio surveys of neutral hydrogen , 2004, astro-ph/0411342.

[76]  S. Matarrese,et al.  CMB-Galaxy correlation in Unified Dark Matter Scalar Field Cosmologies , 2011, 1102.0284.

[77]  M. Jarvis,et al.  An infrared–radio simulation of the extragalactic sky: from the Square Kilometre Array to Herschel , 2010, 1002.1112.

[78]  M. Jarvis,et al.  The cosmic evolution of low-luminosity radio sources from the SDSS DR1 , 2004, astro-ph/0405080.

[79]  Robert Crittenden,et al.  A correlation between the cosmic microwave background and large-scale structure in the Universe , 2004, Nature.

[80]  E. Bertschinger,et al.  Distinguishing modified gravity from dark energy , 2008, 0801.2431.

[81]  P. Adshead,et al.  Gauge fields and inflation: Chiral gravitational waves, fluctuations, and the Lyth bound , 2013, 1301.2598.

[82]  M. Fukugita,et al.  Measuring the galaxy–mass and galaxy–dust correlations through magnification and reddening , 2009, 0902.4240.

[83]  R. Fisher,et al.  The Logic of Inductive Inference , 1935 .

[84]  A. Szalay,et al.  THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE , 2010 .

[85]  R. Sachs,et al.  Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .

[86]  S. Matarrese,et al.  A reassessment of the evidence of the Integrated Sachs–Wolfe effect through the WMAP–NVSS correlation , 2008, 0802.0084.

[87]  M. Hobson,et al.  A Cosmic Microwave Background Feature Consistent with a Cosmic Texture , 2007, Science.

[88]  Christopher Hirata,et al.  Constraints on local primordial non-Gaussianity from large scale structure , 2008 .

[89]  P. Vielva,et al.  Detection of a non‐Gaussian spot in WMAP , 2004 .

[90]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[91]  M. Jarvis,et al.  The evolution of radio sources in the UKIDSS‐DXS–XMM‐LSS field , 2010, 1012.3020.

[92]  N. Aghanim,et al.  Implications of bias evolution on measurements of the integrated Sachs–Wolfe effect: errors and biases in parameter estimation , 2009, 0903.4288.

[93]  T. Giannantonio,et al.  Detectability of a phantom-like braneworld model with the integrated Sachs-Wolfe effect , 2008, 0803.2238.

[94]  Y. Zeldovich,et al.  The interaction of matter and radiation in a hot-model universe , 1969 .