Time-Reversal Detection Using Antenna Arrays

The paper studies detection of a target buried in a rich scattering medium by time reversal. We use a multi-static configuration with receive and transmit arrays of antennas. In time reversal, the backscattered field is recorded, time reversed, and retransmitted (mathematically or physically) into the same scattering medium. We derive two array detectors: the time-reversal channel matched filter when the target channel response is known; and the time-reversal generalized-likelihood ratio test (TR-GLRT) when the target channel response is unknown. The noise added in the initial probing step to the time-reversal signal makes the analysis of the TR-GLRT detector non trivial. The paper derives closed form expressions for the signal-to-noise ratio gain provided by this detector over the corresponding conventional clutter subtraction energy detector in the two extreme conditions of weak and strong (electronic additive) noise and shows that time reversal provides, under weak noise, the optimal waveform shape to probe the environment. We analyze the impact of the array configuration on the detection performance. Finally, experiments with electromagnetic data collected in a multipath scattering laboratory environment confirm our analytical results. Under the realistic conditions tested, time reversal provides detection gains over conventional detection that range from 2 to 4.7 dB.

[1]  A. Devaney,et al.  Time-reversal imaging with multiple signal classification considering multiple scattering between the targets , 2004 .

[2]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[3]  L. M. Novak,et al.  High-Definition Vector Imaging , 1998 .

[4]  E. M. Wright Solution of the equation $ze^z = a$ , 1959 .

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  M. Fink,et al.  Time reversal processing in ultrasonic nondestructive testing , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  Yi Jiang,et al.  Array Processing Using Time Reversal: Experiments and Performance , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[10]  B. A. J. Cockle,et al.  Solution of an equation , 1843 .

[11]  Mark R. Bell Information theory and radar waveform design , 1993, IEEE Trans. Inf. Theory.

[12]  Stuart R. DeGraaf,et al.  SAR imaging via modern 2-D spectral estimation methods , 1998, IEEE Trans. Image Process..

[13]  G.R. Benitz High-definition vector imaging for synthetic aperture radar , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[14]  Yi Jiang,et al.  Single antenna time reversal adaptive interference cancellation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[15]  M. Cheney,et al.  Time-reversal waveform preconditioning for clutter rejection , 2007, 2007 International Waveform Diversity and Design Conference.

[16]  M. Fink,et al.  Taking advantage of multiple scattering to communicate with time-reversal antennas. , 2003, Physical review letters.

[17]  Gerald R. Benitz,et al.  Superresolution HRR ATR with high definition vector imaging , 2001 .

[18]  José M. F. Moura,et al.  Time Reversal Imaging by Adaptive Interference Canceling , 2008, IEEE Transactions on Signal Processing.

[19]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[20]  R.C. Johnson,et al.  Introduction to adaptive arrays , 1982, Proceedings of the IEEE.

[21]  M. Fink,et al.  Time reversal of ultrasonic fields. I. Basic principles , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  José M. F. Moura,et al.  Detection by Time Reversal: Single Antenna , 2007, IEEE Transactions on Signal Processing.

[23]  Young Ju Kim,et al.  Generalized suboptimum decoding for STTC-OFDM systems in MIMO rayleigh fading channels , 2007, 2007 International Symposium on Communications and Information Technologies.

[24]  W. Kuperman,et al.  Iterative time reversal in the ocean , 1997 .

[25]  W. Kuperman,et al.  Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror , 1998 .

[26]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[27]  A.J. Devaney Time reversal imaging of obscured targets from multistatic data , 2005, IEEE Transactions on Antennas and Propagation.

[28]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[29]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[30]  P. Sen,et al.  Nonparametric methods in multivariate analysis , 1974 .

[31]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[32]  Yu Ding,et al.  A fast back-projection algorithm for bistatic SAR imaging , 2002, Proceedings. International Conference on Image Processing.

[33]  Mehrdad Soumekh Bistatic synthetic aperture radar inversion with application in dynamic object imaging , 1991, IEEE Trans. Signal Process..

[34]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[35]  José M. F. Moura,et al.  TR-SAR: Time Reversal Target Focusing in Spotlight SAR , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[36]  M. Fink,et al.  Time reversal acoustics , 1996, IEEE Ultrasonics Symposium, 2004.

[37]  Teruo Fujioka,et al.  ASYMPTOTIC APPROXIMATIONS OF THE INVERSE MOMENT OF THE NONCENTRAL CHI-SQUARED VARIABLE , 2001 .

[38]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[39]  B. Henty,et al.  Multipath-enabled super-resolution for rf and microwave communication using phase-conjugate arrays. , 2004, Physical review letters.

[40]  J. H. Park Moments of the generalized Rayleigh distribution , 1961 .

[41]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[42]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[43]  A. Nehorai,et al.  Information Theoretic Adaptive Radar Waveform Design for Multiple Extended Targets , 2007, IEEE Journal of Selected Topics in Signal Processing.

[44]  Fred K. Gruber,et al.  Subspace-Based Localization and Inverse Scattering of Multiply Scattering Point Targets , 2007, EURASIP J. Adv. Signal Process..

[45]  Yuanwei Jin,et al.  Asymptotic Noise Analysis of Time Reversal Detection , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[46]  J. S. Goldstein,et al.  Full-polarization matched-illumination for target detection and identification , 2002 .

[47]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[48]  N. O'Donoughue,et al.  Time Reversal Synthetic Aperture Radar Imaging In Multipath , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[49]  Dag T. Gjessing Target adaptive matched illumination radar : principles & applications , 1986 .

[50]  Joseph R. Guerci,et al.  Enhanced target detection and identification via optimised radar transmission pulse shape , 2001 .

[51]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[52]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[53]  G. Lerosey,et al.  Time reversal of electromagnetic waves. , 2004, Physical review letters.

[54]  M. Fink,et al.  Time Reversal of Ultrasonic Fields-Part I : Basic Principles , 2000 .

[55]  Jerry L. Eaves,et al.  Principles of Modern Radar , 1987 .

[56]  C. Dorme,et al.  Ultrasonic beam steering through inhomogeneous layers with a time reversal mirror , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[57]  A.J. Paulraj,et al.  Characterization of space-time focusing in time-reversed random fields , 2005, IEEE Transactions on Antennas and Propagation.