Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina

Hypocrea jecorina (= Trichoderma reesei) is the main industrial source of cellulases and hemicellulases used to depolymerise plant biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. Cellulases are formed adaptively, and several positive (XYR1, ACE2, HAP2/3/5) and negative (ACE1, CRE1) components involved in this regulation are now known. In addition, its complete genome sequence has been recently published, thus making the organism susceptible to targeted improvement by metabolic engineering. In this review, we summarise current knowledge about how cellulase biosynthesis is regulated, and outline recent approaches and suitable strategies for facilitating the targeted improvement of cellulase production by genetic engineering.

[1]  O. Singh,et al.  Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives , 2008, Journal of Industrial Microbiology & Biotechnology.

[2]  Filip Rolland,et al.  Glucose-sensing and -signalling mechanisms in yeast. , 2002, FEMS yeast research.

[3]  C. Kubicek,et al.  The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation-relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1. , 2003, Fungal genetics and biology : FG & B.

[4]  K. Borkovich,et al.  Heterotrimeric G protein signaling in filamentous fungi. , 2007, Annual review of microbiology.

[5]  Pedro M. Coutinho,et al.  Carbohydrate-active enzymes : an integrated database approach , 1999 .

[6]  M. Penttilä,et al.  Role of Ace2 (Activator of Cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. , 2008, Fungal genetics and biology : FG & B.

[7]  A. Mach-Aigner,et al.  Trichoderma reesei: Methods and Protocols , 2021, Methods in Molecular Biology.

[8]  K. Borkovich,et al.  A G-protein beta subunit required for sexual and vegetative development and maintenance of normal G alpha protein levels in Neurospora crassa. , 2002, Eukaryotic cell.

[9]  M. Penttilä,et al.  Role of the bga1-Encoded Extracellular β-Galactosidase of Hypocrea jecorina in Cellulase Induction by Lactose , 2005, Applied and Environmental Microbiology.

[10]  D. Bell-Pedersen,et al.  The Rhythms of Life: Circadian Output Pathways in Neurospora , 2006, Journal of biological rhythms.

[11]  Merja Penttilä,et al.  The missing link in the fungal L-arabinose catabolic pathway, identification of the L-xylulose reductase gene. , 2002, Biochemistry.

[12]  C. Kubicek,et al.  Properties of a Conidial-bound Cellulase Enzyme System from Trichoderma reesei , 1988 .

[13]  M. Himmel,et al.  Outlook for cellulase improvement: screening and selection strategies. , 2006, Biotechnology advances.

[14]  M. Penttilä,et al.  Isolation of the ace1 Gene Encoding a Cys2-His2 Transcription Factor Involved in Regulation of Activity of the Cellulase Promoter cbh1of Trichoderma reesei * , 2000, The Journal of Biological Chemistry.

[15]  Yasushi Morikawa,et al.  l-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei , 2001, Current Genetics.

[16]  T. Fowler,et al.  The bgI1 gene encoding extracellular β‐glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex , 1992, Molecular microbiology.

[17]  M. Penttilä,et al.  Enzymatic Properties and Intracellular Localization of the Novel Trichoderma reesei β-Glucosidase BGLII (Cel1A) , 2002, Applied and Environmental Microbiology.

[18]  M. Mandels,et al.  SOPHOROSE AS AN INDUCER OF CELLULASE IN TRICHODERMA VIRIDE , 1962, Journal of bacteriology.

[19]  M. Penttilä,et al.  ACEII, a Novel Transcriptional Activator Involved in Regulation of Cellulase and Xylanase Genes of Trichoderma reesei * , 2001, The Journal of Biological Chemistry.

[20]  G. Tiraby,et al.  Genetic improvement of Trichoderma reesei for large scale cellulase production , 1988 .

[21]  S. Zeilinger,et al.  The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element , 2001, Molecular Genetics and Genomics.

[22]  I. Bányai,et al.  The alternative d-galactose degrading pathway of Aspergillus nidulans proceeds via l-sorbose , 2003, Archives of Microbiology.

[23]  I. Rayment,et al.  Structure and Function of Enzymes of the Leloir Pathway for Galactose Metabolism* , 2003, Journal of Biological Chemistry.

[24]  Jay C Dunlap,et al.  How fungi keep time: circadian system in Neurospora and other fungi. , 2006, Current opinion in microbiology.

[25]  K. Borkovich,et al.  A G-Protein β Subunit Required for Sexual and Vegetative Development and Maintenance of Normal Gα Protein Levels in Neurospora crassa , 2002, Eukaryotic Cell.

[26]  A. Herrera-Estrella,et al.  Trichoderma atroviride G-Protein α-Subunit Gene tga1 Is Involved in Mycoparasitic Coiling and Conidiation , 2002, Eukaryotic Cell.

[27]  B. Montenecourt,et al.  Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations , 1984, Applied Microbiology and Biotechnology.

[28]  Michael Brunner,et al.  Interlocked feedback loops of the circadian clock of Neurospora crassa , 2008, Molecular microbiology.

[29]  C. Kubicek,et al.  The d‐xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and d‐galactose catabolism and necessary for β‐galactosidase and cellulase induction by lactose , 2007, Molecular microbiology.

[30]  C. Kubicek,et al.  Triggering of cellulase biosynthesis by cellulose in Trichoderma reesei. Involvement of a constitutive, sophorose-inducible, glucose-inhibited beta-diglucoside permease. , 1993, The Journal of biological chemistry.

[31]  Matthias G. Steiger,et al.  Transcriptional Regulation of xyr1, Encoding the Main Regulator of the Xylanolytic and Cellulolytic Enzyme System in Hypocrea jecorina , 2008, Applied and Environmental Microbiology.

[32]  D. Eveleigh,et al.  Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Kubicek,et al.  Cellobiohydrolase II is the main conidial-bound cellulase in Trichoderma reesei and other Trichoderma strains , 2004, Archives of Microbiology.

[34]  C. Kubicek,et al.  Lactose metabolism in filamentous fungi: how to deal with an unknown substrate , 2007 .

[35]  R. Trumbly Glucose repression in the yeast Saccharomyces cerevisiae , 1992, Molecular microbiology.

[36]  T. Houfek,et al.  Transcriptional Regulation of Biomass-degrading Enzymes in the Filamentous Fungus Trichoderma reesei* , 2003, Journal of Biological Chemistry.

[37]  Lukas Hartl,et al.  The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome , 2008, BMC Genomics.

[38]  C. Kubicek,et al.  Lactose metabolism and cellulase production in Hypocrea jecorina: the gal7 gene, encoding galactose-1-phosphate uridylyltransferase, is essential for growth on galactose but not for cellulase induction , 2002, Molecular Genetics and Genomics.

[39]  D. Sternberg,et al.  Regulation of the cellulolytic system in Trichoderma reesei by sophorose: induction of cellulase and repression of beta-glucosidase , 1980, Journal of bacteriology.

[40]  J. Kelly,et al.  Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans , 1991, Molecular and cellular biology.

[41]  M. Penttilä,et al.  Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei , 1997, Applied and environmental microbiology.

[42]  S. Zeilinger,et al.  Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. , 2004, Fungal genetics and biology : FG & B.

[43]  S. Zeilinger,et al.  Nucleosome transactions on the Hypocrea jecorina ( Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction , 2003, Molecular Genetics and Genomics.

[44]  M. Carlson,et al.  Glucose repression in yeast. , 1999, Current opinion in microbiology.

[45]  J. R. Loewenberg,et al.  Sophorose metabolism and cellulase induction in Trichoderma , 1977, Archives of Microbiology.

[46]  Mikelina Gritzali,et al.  The Cellulase System ofTrichoderma: Relationships Between Purified Extracellular Enzymes from Induced or Cellulose-Grown Cells , 1979 .

[47]  A. Wolffe,et al.  Xenopus NF‐Y pre‐sets chromatin to potentiate p300 and acetylation‐responsive transcription from the Xenopus hsp70 promoter in vivo , 1998, The EMBO journal.

[48]  R. Gomer,et al.  Overexpression of White Collar‐1 (WC‐1) activates circadian clock‐associated genes, but is not sufficient to induce most light‐regulated gene expression in Neurospora crassa , 2002, Molecular microbiology.

[49]  Matthias G. Steiger,et al.  Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina , 2007, FEBS letters.

[50]  S. Eykyn Microbiology , 1950, The Lancet.

[51]  M. Schmoll,et al.  The G-Alpha Protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) Regulates Cellulase Gene Expression in the Presence of Light , 2009, Eukaryotic Cell.

[52]  J. Kelly,et al.  The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein , 2000, Molecular and General Genetics MGG.

[53]  V. Farkaš,et al.  Metabolic regulation of endoglucanase synthesis in Trichoderma reesei: participation of cyclic AMP and glucose-6-phosphate. , 1993, Canadian journal of microbiology.

[54]  Robert L Mach,et al.  Phosphorylation Positively Regulates DNA Binding of the Carbon Catabolite Repressor Cre1 of Hypocrea jecorina(Trichoderma reesei)* , 2002, The Journal of Biological Chemistry.

[55]  M. Penttilä,et al.  The glucose repressor genecre1 ofTrichoderma: Isolation and expression of a full-length and a truncated mutant form , 1996, Molecular and General Genetics MGG.

[56]  C. Kubicek,et al.  d-Xylose Metabolism in Hypocrea jecorina: Loss of the Xylitol Dehydrogenase Step Can Be Partially Compensated for by lad1-Encoded l-Arabinitol-4-Dehydrogenase , 2003, Eukaryotic Cell.

[57]  R. Krska,et al.  The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. , 2005, Fungal genetics and biology : FG & B.

[58]  S. Zeilinger,et al.  Two Adjacent Protein Binding Motifs in the cbh2(Cellobiohydrolase II-encoding) Promoter of the Fungus Hypocrea jecorina (Trichoderma reesei) Cooperate in the Induction by Cellulose* , 1998, The Journal of Biological Chemistry.

[59]  Christophe d'Enfert,et al.  G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. , 2006, Fungal genetics and biology : FG & B.

[60]  C. Kubicek,et al.  D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. , 2006, Microbiology.

[61]  L. Pinna,et al.  One‐thousand‐and‐one substrates of protein kinase CK2? , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[62]  C. Kubicek,et al.  Lack of aldose 1-epimerase in Hypocrea jecorina (anamorph Trichoderma reesei): A key to cellulase gene expression on lactose , 2008, Proceedings of the National Academy of Sciences.

[63]  A. Caudy,et al.  Regulation of Transcriptional Activation Domain Function by Ubiquitin , 2001, Science.

[64]  R. Mach,et al.  Xyr1 (Xylanase Regulator 1) Regulates both the Hydrolytic Enzyme System and d-Xylose Metabolism in Hypocrea jecorina , 2006, Eukaryotic Cell.

[65]  C. d’Enfert,et al.  The Heterotrimeric G-Protein GanB(α)-SfaD(β)-GpgA(γ) Is a Carbon Source Sensor Involved in Early cAMP-Dependent Germination in Aspergillus nidulans , 2005, Genetics.

[66]  Thomas Peterbauer,et al.  The metabolic role and evolution of L-arabinitol 4-dehydrogenase of Hypocrea jecorina. , 2004, European journal of biochemistry.

[67]  F. Henrique-Silva,et al.  Cellulase Induction in Trichoderma reesei by Cellulose Requires Its Own Basal Expression* , 1997, The Journal of Biological Chemistry.

[68]  C. d’Enfert,et al.  The heterotrimeric G-protein GanB(alpha)-SfaD(beta)-GpgA(gamma) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. , 2005, Genetics.

[69]  S. Zeilinger,et al.  Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei , 1996, Molecular microbiology.

[70]  K. Rudd,et al.  Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. , 1994, Journal of molecular biology.

[71]  P. Hooley,et al.  The Aspergillus nidulans stress response transcription factor StzA is ascomycete-specific and shows species-specific polymorphisms in the C-terminal region. , 2008, Mycological research.

[72]  Birte Svensson,et al.  Recent Advances in Carbohydrate Bioengineering , 1999 .

[73]  C. Kubicek,et al.  The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on d‐galactose , 2004, Molecular microbiology.

[74]  M. Schmoll The information highways of a biotechnological workhorse – signal transduction in Hypocrea jecorina , 2008, BMC Genomics.

[75]  K. Wright,et al.  CCAAT-binding factor NF-Y and RFX are required for in vivo assembly of a nucleoprotein complex that spans 250 base pairs: the invariant chain promoter as a model , 1997, Molecular and cellular biology.

[76]  R. Mantovani,et al.  A survey of 178 NF-Y binding CCAAT boxes. , 1998, Nucleic acids research.

[77]  C. Kubicek,et al.  A constitutive, plasma-membrane bound β-glucosidase in Trichoderma reesei , 1986 .

[78]  K. Borkovich,et al.  Mutational activation of a Galphai causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. , 1999, Genetics.

[79]  U. S. Army,et al.  Induction of cellulolytic enzymes in Trichoderma reesei by sophorose , 1979, Journal of bacteriology.

[80]  J. Kelly,et al.  A role for creD, a carbon catabolite repression gene from Aspergillus nidulans, in ubiquitination , 2004, Molecular microbiology.

[81]  V. Ogryzko,et al.  Regulation of activity of the transcription factor GATA-1 by acetylation , 1998, Nature.

[82]  H. M. Holden,et al.  Galactokinase: structure, function and role in type II galactosemia , 2004, Cellular and Molecular Life Sciences CMLS.

[83]  C. Kubicek,et al.  Induction of the gal Pathway and Cellulase Genes Involves No Transcriptional Inducer Function of the Galactokinase in Hypocrea jecorina* , 2007, Journal of Biological Chemistry.

[84]  Monika Schmoll,et al.  Sulphur metabolism and cellulase gene expression are connected processes in the filamentous fungus Hypocrea jecorina (anamorph Trichoderma reesei) , 2008, BMC Microbiology.

[85]  J. Kelly,et al.  The WD40‐repeat protein CreC interacts with and stabilizes the deubiquitinating enzyme CreB in vivo in Aspergillus nidulans , 2002, Molecular microbiology.

[86]  M. Warzywoda,et al.  Development of a culture medium for large‐scale production of cellulolytic enzymes by Trichoderma reesei , 1983, Biotechnology and bioengineering.

[87]  M. Himmel,et al.  The potential of cellulases and cellulosomes for cellulosic waste management. , 2007, Current opinion in biotechnology.

[88]  C. Kubicek,et al.  Induction of extracellular beta-galactosidase (Bga1) formation by D-galactose in Hypocrea jecorina is mediated by galactitol. , 2007, Microbiology.

[89]  Robert L. Mach,et al.  Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) , 2008, Applied Microbiology and Biotechnology.

[90]  Monika Schmoll,et al.  Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process , 2007, BMC Genomics.

[91]  C. Kubicek,et al.  Evidence for a single, specific β-glucosidase in cell walls from Trichoderma reesei QM9414 , 1990 .

[92]  M. Penttilä,et al.  Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei , 1998, Molecular and General Genetics MGG.

[93]  C. Kubicek,et al.  Disruption of the Trichoderma reesei cbh2 gene coding for cellobiohydrolase II leads to a delay in the triggering of cellulase formation by cellulose , 1992 .

[94]  M. Penttilä,et al.  ACEI of Trichoderma reesei Is a Repressor of Cellulase and Xylanase Expression , 2003, Applied and Environmental Microbiology.

[95]  Jay C Dunlap,et al.  The Neurospora Circadian System , 2004, Journal of biological rhythms.

[96]  J. Kelly,et al.  Carbon catabolite repression in Aspergillus nidulans involves deubiquitination , 2001, Molecular microbiology.

[97]  D. Eveleigh,et al.  Increasing yields of extracellular enzymes. , 1979, Advances in applied microbiology.

[98]  C. Kubicek,et al.  Transformation of Trichoderma reesei with the cellobiohydrolase II gene as a means for obtaining strains with increased cellulase production and specific activity , 1991 .

[99]  J. Kelly,et al.  Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon cataboiite repression in Aspergillus nidulans , 1993, Molecular microbiology.

[100]  J. Visser,et al.  Onset of Carbon Catabolite Repression in Aspergillus nidulans , 2003, The Journal of Biological Chemistry.

[101]  M. Schmoll,et al.  Envoy, a PAS/LOV Domain Protein of Hypocrea jecorina (Anamorph Trichoderma reesei), Modulates Cellulase Gene Transcription in Response to Light , 2005, Eukaryotic Cell.

[102]  F. Zimmermann,et al.  Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression , 1977, Molecular and General Genetics MGG.

[103]  V. Kauppinen,et al.  Transglycosylation products of cellulase system ofTrichoderma reesei , 2005, Biotechnology Letters.

[104]  Bernard Henrissat,et al.  Corrigendum: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) , 2008, Nature Biotechnology.

[105]  P. Wang,et al.  Induction of a Cryphonectria parasitica cellobiohydrolase I gene is suppressed by hypovirus infection and regulated by a GTP-binding-protein-linked signaling pathway involved in fungal pathogenesis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[106]  G. Allmaier,et al.  Characterization of the bga1‐encoded glycoside hydrolase family 35 β‐galactosidase of Hypocrea jecorina with galacto‐β‐d‐galactanase activity , 2007 .

[107]  S. Polo,et al.  Finding the Right Partner: Science or ART? , 2008, Cell.

[108]  A. Harkki,et al.  The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose‐inducible β‐glucosidase involved in cellulase induction by sophorose , 1995, Molecular microbiology.

[109]  J. Heitman,et al.  Light Controls Growth and Development via a Conserved Pathway in the Fungal Kingdom , 2005, PLoS biology.

[110]  C. Kubicek,et al.  Regulation of formation of the intracellular β-gaiactosidase activity ofAspergillus nidulans , 2002, Archives of Microbiology.

[111]  G. Santangelo,et al.  Glucose Signaling in Saccharomyces cerevisiae , 2006, Microbiology and Molecular Biology Reviews.

[112]  E. Reese,et al.  Quartermaster culture collection. , 1950 .