Quantum relational Hoare logic

We present a logic for reasoning about pairs of interactive quantum programs – quantum relational Hoare logic (qRHL). This logic follows the spirit of probabilistic relational Hoare logic (Barthe et al. 2009) and allows us to formulate how the outputs of two quantum programs relate given the relationship of their inputs. Probabilistic RHL was used extensively for computer-verified security proofs of classical cryptographic protocols. Since pRHL is not suitable for analyzing quantum cryptography, we present qRHL as a replacement, suitable for the security analysis of post-quantum cryptography and quantum protocols. The design of qRHL poses some challenges unique to the quantum setting, e.g., the definition of equality on quantum registers. Finally, we implemented a tool for verifying proofs in qRHL and developed several example security proofs in it.

[1]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[2]  Rajagopal Nagarajan,et al.  Verification of Concurrent Quantum Protocols by Equivalence Checking , 2014, TACAS.

[3]  Dominique Unruh,et al.  Non-Interactive Zero-Knowledge Proofs in the Quantum Random Oracle Model , 2015, EUROCRYPT.

[4]  R. Cleve,et al.  Consequences and limits of nonlocal strategies , 2004 .

[5]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[6]  J. Gregory Morrisett,et al.  The Foundational Cryptography Framework , 2014, POST.

[7]  Dominique Unruh,et al.  Revocable Quantum Timed-Release Encryption , 2014, J. ACM.

[8]  Li Zhou,et al.  Quantum Coupling and Strassen Theorem , 2018, ArXiv.

[9]  Benjamin Grégoire,et al.  Formal certification of code-based cryptographic proofs , 2009, POPL '09.

[10]  Benjamin Grégoire,et al.  Coupling proofs are probabilistic product programs , 2016, POPL.

[11]  Yuan Feng,et al.  Proof rules for the correctness of quantum programs , 2007, Theor. Comput. Sci..

[12]  Benjamin Grégoire,et al.  EasyCrypt: A Tutorial , 2013, FOSAD.

[13]  Mark Zhandry,et al.  Random Oracles in a Quantum World , 2010, ASIACRYPT.

[14]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[15]  Jacques Stern,et al.  RSA-OAEP Is Secure under the RSA Assumption , 2001, Journal of Cryptology.

[16]  Yuan Feng,et al.  Toward Automatic Verification of Quantum Cryptographic Protocols , 2015, CONCUR.

[17]  Rajagopal Nagarajan,et al.  Equivalence Checking of Quantum Protocols , 2013, TACAS.

[18]  John Watrous Zero-Knowledge against Quantum Attacks , 2009, SIAM J. Comput..

[19]  Benjamin Grégoire,et al.  Beyond Provable Security Verifiable IND-CCA Security of OAEP , 2011, CT-RSA.

[20]  Hideki Sakurada,et al.  Automated Verification of Equivalence on Quantum Cryptographic Protocols , 2013, SCSS.

[21]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[22]  Hideki Sakurada,et al.  Semi-automated verification of security proofs of quantum cryptographic protocols , 2016, J. Symb. Comput..

[23]  UnruhDominique Quantum relational Hoare logic , 2019 .

[24]  Mihir Bellare,et al.  Optimal Asymmetric Encryption , 1994, EUROCRYPT.

[25]  Mingsheng Ying,et al.  Floyd--hoare logic for quantum programs , 2011, TOPL.

[26]  Benjamin Grégoire,et al.  Relational Reasoning via Probabilistic Coupling , 2015, LPAR.

[27]  Mark Zhandry,et al.  How to Construct Quantum Random Functions , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[28]  Dominique Unruh,et al.  Quantum Proofs of Knowledge , 2012, IACR Cryptol. ePrint Arch..

[29]  Giancarlo Comi,et al.  Early Hemorrhagic Transformation of Brain Infarction: Rate, Predictive Factors, and Influence on Clinical Outcome: Results of a Prospective Multicenter Study , 2008, Stroke.

[30]  Victor Shoup,et al.  OAEP Reconsidered , 2001, CRYPTO.

[31]  Andris Ambainis,et al.  Quantum Attacks on Classical Proof Systems: The Hardness of Quantum Rewinding , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[32]  René Thiemann,et al.  Matrices, Jordan Normal Forms, and Spectral Radius Theory , 2015, Arch. Formal Proofs.

[33]  David A. Basin,et al.  CryptHOL: Game-Based Proofs in Higher-Order Logic , 2020, Journal of Cryptology.

[34]  John Watrous,et al.  Zero-knowledge against quantum attacks , 2005, STOC '06.

[35]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[36]  Matthias Berg,et al.  Formal verification of cryptographic security proofs , 2013 .

[37]  Soroosh Nazem,et al.  Verification of Quantum Protocols with a Probabilistic Model-Checker , 2011, QPL/DCM@ICALP.

[38]  Benjamin Grégoire,et al.  Computer-Aided Security Proofs for the Working Cryptographer , 2011, CRYPTO.

[39]  Hideki Sakurada,et al.  Application of a Process Calculus to Security Proofs of Quantum Protocols , 2012 .

[40]  Yehuda Lindell,et al.  Introduction to Modern Cryptography (Chapman & Hall/Crc Cryptography and Network Security Series) , 2007 .

[41]  Mark Zhandry,et al.  Secure Identity-Based Encryption in the Quantum Random Oracle Model , 2012, CRYPTO.

[42]  Nick Benton,et al.  Simple relational correctness proofs for static analyses and program transformations , 2004, POPL.

[43]  Martín Abadi,et al.  Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption) , 2007, Journal of Cryptology.

[44]  Florian Haftmann Code generation from Isabelle/HOL theories , 2019 .

[45]  Mingsheng Ying,et al.  Foundations of Quantum Programming , 2016 .

[46]  Yehuda Lindell,et al.  Introduction to Modern Cryptography, Second Edition , 2014 .

[47]  Danny Dolev,et al.  On the security of public key protocols , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[48]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[49]  Rohit Chadha,et al.  Reasoning About Imperative Quantum Programs , 2006, MFPS.

[50]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[51]  Bruno Blanchet,et al.  A Computationally Sound Mechanized Prover for Security Protocols , 2008, IEEE Transactions on Dependable and Secure Computing.

[52]  Mihir Bellare,et al.  The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs , 2006, EUROCRYPT.

[53]  Yoshihiko Kakutani,et al.  A Logic for Formal Verification of Quantum Programs , 2009, ASIAN.

[54]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.