Remote-plasma chemical vapor deposition of conformal ZrB2 films at low temperature: A promising diffusion barrier for ultralarge scale integrated electronics

High-quality ZrB2 thin films have been deposited at substrate temperatures as low as 300 °C by a new method: remote hydrogen-plasma chemical vapor deposition from the single-source precursor Zr(BH4)4. Carrying out the deposition in the presence of atomic hydrogen generates films with properties that are far superior to those deposited by purely thermal methods; the latter are boron-rich, oxidize readily in air, and adhere poorly to the substrates. In contrast, the films generated at a substrate temperature of 300 °C in the presence of atomic H have a B/Zr ratio of 2, a resistivity of 40 μΩ cm, an oxygen content of ⩽4 at. %, and are fully conformal in deep vias. A 20 nm thick amorphous film of ZrB2 on c-Si(001) prevents Cu indiffusion after 30 min at 750 °C. We propose that the beneficial effects of atomic hydrogen can be attributed to promoting the desorption of diborane from the growth surface.

[1]  San-Yuan Chen,et al.  Phase formation behavior and diffusion barrier property of reactively sputtered tantalum-based thin films used in semiconductor metallization , 1999 .

[2]  J. Pierson,et al.  Influence of oxygen flow rate on the structural and mechanical properties of reactively magnetron sputter-deposited Zr–B–O coatings , 1999 .

[3]  M. Trenary,et al.  Reflection adsorption infrared spectroscopy of the oxidation of thin films of boron and hafnium diboride grown on Hf(0001) , 1997 .

[4]  T. Yeh,et al.  Amorphouslike chemical vapor deposited tungsten diffusion barrier for copper metallization and effects of nitrogen addition , 1997 .

[5]  M. Trenary,et al.  Heteroepitaxy of Hafnium Diboride on a Hafnium(0001) Single Crystal Surface , 1997 .

[6]  J. Abelson,et al.  Hydrogen‐surface reactions during the growth of hydrogenated amorphous silicon by reactive magnetron sputtering: A real time kinetic study by in situ infrared absorption , 1995 .

[7]  G. Male,et al.  Thermodynamics of the system Zr-B-H-Cl. A contribution at low temperature , 1995 .

[8]  J. Elders,et al.  Laser-induced CVD of titanium diboride and the influence of atomic hydrogen , 1993 .

[9]  K. Sreekumar,et al.  Effect of oxygen pick-up on the properties of plasma sprayed titanium diboride coatings , 1993 .

[10]  J. Cuomo,et al.  Low resistivity body‐centered cubic tantalum thin films as diffusion barriers between copper and silicon , 1992 .

[11]  K. Holloway,et al.  Tantalum as a diffusion barrier between copper and silicon , 1990 .

[12]  B. Ault Excimer-laser-induced oxidation of diborane: Formation and isolation of HBO, HB18O AND H3B3O3 in argon matrices , 1989 .

[13]  R. Opila,et al.  Low‐temperature deposition of zirconium and hafnium boride films by thermal decomposition of the metal borohydrides (M[BH4]4) , 1988 .

[14]  G. Girolami,et al.  Titanium, zirconium, and hafnium tetrahydroborates as "tailored" CVD precursors for metal diboride thin films , 1988 .

[15]  T. Shikama,et al.  Deposition of TiB2 films by a co-sputtering method , 1988 .

[16]  I. R. Harris,et al.  A comparison of the bulk resistivity as a function of composition for some group lVA-boron and -silicon systems , 1987 .

[17]  S. Kurtz,et al.  Chemical vapor deposition of titanium nitride at low temperatures , 1986 .

[18]  W. J. Lackey,et al.  Chemical Vapor Deposition of Erosion‐Resistant TiB2 Coatings , 1985 .

[19]  A. Becker,et al.  TiB2-coated cathodes for aluminum smelting cells , 1984 .

[20]  H. Pierson,et al.  Thick boride coatings by chemical vapor deposition , 1982 .

[21]  M. Yamada,et al.  Low-temperature deposition of TiB2 on copper and some properties data , 1982 .

[22]  D. M. Mattox,et al.  The chemical vapor deposition of TiB2 on graphite , 1979 .

[23]  S. Motojima,et al.  Chemical vapour deposition of niobium diboride (NbB2) , 1975 .

[24]  R. F. Porter,et al.  INFRARED SPECTRA OF SOLID BOROXINE1 , 1963 .

[25]  W. Weltner,et al.  MATRIX ISOLATION OF HIGH TEMPERATURE VAPORS: BORIC OXIDE AND CARBON. Technical Report No. C-12 , 1962 .

[26]  W. Price The Infra‐Red Absorption Spectra of Some Metal Borohydrides , 1949 .

[27]  J. Katz,et al.  The Preparation and Properties of the Group IV-B Metal Borohydrides , 1949 .

[28]  H. C. Longuet-Higgins,et al.  The Vibrational Spectra of Some Metal Borohydrides , 1949 .

[29]  W. Price The Absorption Spectrum of Diborane , 1948 .

[30]  W. Price The Structure of Diborane , 1947 .

[31]  M. Pons,et al.  Diffusion Barriers for Copper Metallization: Predicting Phase Stability and Reactivity using Equilibrium Thermodynamics , 1999 .

[32]  Ajay Jain,et al.  Advanced CVD Barrier Technology for Copper Interconnect , 1999 .

[33]  A. Wang,et al.  Experimental investigation of the ZrBClH CVD system , 1993 .

[34]  T. Marks,et al.  Structure and dynamics in metal tetrahydroborates. II. Vibrational spectra and structures of some transition metal and actinide tetrahydroborates , 1972 .

[35]  A. Emery,et al.  Raman spectra and vibrational assignments of aluminum borohydride and some isotopic derivatives , 1960 .

[36]  M. Hansen,et al.  Constitution of Binary Alloys , 1958 .

[37]  A. Brenner,et al.  Electrodeposition of Metals from Organic Solutions III . Preparation and Electrolysis of Titanium and Zirconium Compounds in Nonaqueous Media , 1957 .