Na+ diffusion mechanism and transition metal substitution in tunnel-type manganese-based oxides for Na-ion rechargeable batteries

Na0.44MnO2 (NMO) with tunnel-type structure is a reference cathode material for rechargeable Na-ion batteries. In this work, the structural, electrochemical and computational investigations are combined to study the properties of...

[1]  Z. Bakenov,et al.  Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review , 2021 .

[2]  Xing-long Wu,et al.  High‐ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium‐ion batteries , 2021, InfoMat.

[3]  Yuliang Cao,et al.  Research progress of tunnel-structural Na0.44MnO2 cathode for sodium-ion batteries: A mini review , 2020 .

[4]  I. Quinzeni,et al.  From tunnel NMO to layered polymorphs oxides for sodium ion batteries , 2020, SN Applied Sciences.

[5]  A. Mauger,et al.  State-of-the-Art Electrode Materials for Sodium-Ion Batteries , 2020, Materials.

[6]  Zhian Zhang,et al.  Engineering of Polyanion Type Cathode Materials for Sodium‐Ion Batteries: Toward Higher Energy/Power Density , 2020, Advanced Functional Materials.

[7]  D. Aurbach,et al.  The Sodium Storage Mechanism in Tunnel‐Type Na0.44MnO2 Cathodes and the Way to Ensure Their Durable Operation , 2020, Advanced Energy Materials.

[8]  Xu Yang,et al.  Isostructural and Multivalent Anion Substitution toward Improved Phosphate Cathode Materials for Sodium-Ion Batteries. , 2020, Small.

[9]  Genqiang Zhang,et al.  Electrochemical Performance Optimization of Layered P2‐Type Na 0.67 MnO 2 through Simultaneous Mn‐Site Doping and Nanostructure Engineering , 2019, Batteries & Supercaps.

[10]  Zhen-guo Wu,et al.  Deciphering an Abnormal Layered‐Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode , 2019, Angewandte Chemie.

[11]  Chun-hua Chen,et al.  Performance of Na0.44Mn1−xMxO2 (M = Ni, Mg; 0 ≤ x ≤ 0.44) as a cathode for rechargeable sodium ion batteries , 2019, Journal of Solid State Electrochemistry.

[12]  A. Chroneos,et al.  Defects, Dopants and Sodium Mobility in Na2MnSiO4 , 2018, Scientific Reports.

[13]  K. Kubota,et al.  Electrochemistry and Solid‐State Chemistry of NaMeO2 (Me = 3d Transition Metals) , 2018, Advanced Energy Materials.

[14]  Ling Huang,et al.  Cu2+ Dual-Doped Layer-Tunnel Hybrid Na0.6Mn1- xCu xO2 as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability. , 2018, ACS applied materials & interfaces.

[15]  Yu-Guo Guo,et al.  Layered Oxide Cathodes for Sodium‐Ion Batteries: Phase Transition, Air Stability, and Performance , 2018 .

[16]  K. Hemalatha,et al.  Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1-xO2 cathodes for sodium-ion batteries. , 2018, Dalton transactions.

[17]  C. Ferrara,et al.  Aqueous Processing of Na0.44MnO2 Cathode Material for the Development of Greener Na-Ion Batteries. , 2017, ACS applied materials & interfaces.

[18]  M. Islam,et al.  Na2CoSiO4 as a cathode material for sodium-ion batteries: structure, electrochemistry and diffusion pathways. , 2016, Physical chemistry chemical physics : PCCP.

[19]  Z. Wen,et al.  Cobalt-substituted Na0.44Mn1-xCoxO2: phase evolution and a high capacity positive electrode for sodium-ion batteries , 2016 .

[20]  Jun Wang,et al.  Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries , 2016 .

[21]  M. Islam,et al.  Feeling the strain: enhancing ionic transport in olivine phosphate cathodes for Li- and Na-ion batteries through strain effects , 2016 .

[22]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[23]  Aravindaraj G. Kannan,et al.  Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes , 2013 .

[24]  R. Ruffo,et al.  Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte , 2013 .

[25]  Shin-ichi Nishimura,et al.  High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. , 2012, Angewandte Chemie.

[26]  A. Yamada,et al.  Fe3+/Fe2+ Redox Couple Approaching 4 V in Li2–x(Fe1–yMny)P2O7 Pyrophosphate Cathodes , 2012 .

[27]  Qiliang Li,et al.  The tunnel manganese oxide Na4.32Mn9O18: a new Na+ site discovered by single-crystal X-ray diffraction. , 2011, Acta crystallographica. Section C, Crystal structure communications.

[28]  Lise Daniel,et al.  High voltage spinel oxides for Li-ion batteries: From the material research to the application , 2009 .

[29]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[30]  J. Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[31]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[32]  W Smith,et al.  DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. , 1996, Journal of molecular graphics.

[33]  Konrad Hinsen,et al.  nMOLDYN: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations , 1995 .