Implantable Brain-Computer Interface Based On Printing Technology

Implantable brain-computer interface is a braincomputer interaction device by implants optrodes/electrodes on the surface or deep of the brain. By stimulating and recording neural signals, we can explore the function of neural tissue and further guide disease treatment or brain signal decoding. This article reviews the development of printed electronics in implantable brain-computer interfaces, mainly discussing the advantages and disadvantages of printed electrodes in braincomputer interfaces and the possibility of printing technology used in optogenetic brain-computer interfaces, to illuminate a great prospect of printing technology in implantable braincomputer interfaces.

[1]  Isaac A. Spiegel,et al.  High-fidelity Modeling and Validation of Electrohydrodynamic Jet Printing , 2022, Materialia.

[2]  S. Sreenilayam,et al.  Nanoparticle production via laser ablation synthesis in solution method and printed electronic application - A brief review , 2022, Results in Engineering.

[3]  M. Abid,et al.  Advancements and applications of electrohydrodynamic printing in modern microelectronic devices: a comprehensive review , 2022, Applied Physics A.

[4]  M. Poliks,et al.  Printed Electronics for Extreme High Temperature Environments , 2022, Additive Manufacturing.

[5]  M. Tavakoli,et al.  Reversible polymer-gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing , 2021, Nature Communications.

[6]  Vsevolod Lyakhovetskii,et al.  Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces , 2020, Nature Biomedical Engineering.

[7]  A. Tehrani‐Bagha,et al.  Highly Flexible Single-Unit Resolution All Printed Neural Interface on a Bioresorbable Backbone. , 2020, ACS applied bio materials.

[8]  H. Yawo,et al.  Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation , 2020, Proceedings of the National Academy of Sciences.

[9]  Xuanhe Zhao,et al.  3D printing of conducting polymers , 2020, Nature Communications.

[10]  D. Ghezzi,et al.  All‐Printed Electrocorticography Array for In Vivo Neural Recordings , 2020, Advanced Engineering Materials.

[11]  J. Ulański,et al.  Inkjet Printing of Super Yellow: Ink Formulation, Film Optimization, OLEDs Fabrication, and Transient Electroluminescence , 2019, Scientific Reports.

[12]  Leila Ghanbari,et al.  Inkjet-Printed Silver Electrode Array for in-vivo Electrocorticography , 2019, 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER).

[13]  Caroline Murawski,et al.  Photostimulation for In Vitro Optogenetics with High‐Power Blue Organic Light‐Emitting Diodes , 2019, Advanced biosystems.

[14]  T. Fujie,et al.  Inkjet-Printed Neural Electrodes with Mechanically Gradient Structure. , 2018, ACS applied bio materials.

[15]  Donggeon Han,et al.  Emission Area Patterning of Organic Light‐Emitting Diodes (OLEDs) via Printed Dielectrics , 2018, Advanced Functional Materials.

[16]  Vivek Subramanian,et al.  Inkjet‐Printed Flexible Gold Electrode Arrays for Bioelectronic Interfaces , 2016 .

[17]  Justin C. Williams,et al.  Printable and transparent micro-electrocorticography (μECoG) for optogenetic applications , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[18]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[19]  T. Kurokawa,et al.  Electrical properties of polyacetylene/polysiloxane interface , 1983 .

[20]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[21]  H. Altenburger,et al.  Elektrobiologische Vorgänge an der menschlichen Hirnrinde , 1935, Deutsche Zeitschrift für Nervenheilkunde.

[22]  Z. Cui,et al.  A triple layer printed blue OLED with blurred interface , 2021 .

[23]  D. S. Smith,et al.  Electrical properties of linear polyacetylene , 1968 .

[24]  D. Weiss,et al.  Electronic Conduction in Polymers. II. The Electrochemical Reduction of Polypyrrole at Controlled Potential , 1963 .

[25]  W. Penfield,et al.  Focal epilepsy, sensory precipitation and evoked cortical potentials. , 1949, Electroencephalography and clinical neurophysiology.