Benchmarking Transition Metal Dichalcogenide MOSFET in the Ultimate Physical Scaling Limit

In this letter, we propose a nonplanar transition metal dichalcogenide (TMD) channel field effect transistor and explore its ballistic performance in the ultimate scaling limit of sub-5 nm physical gate length (Lg) using self-consistent nonequilibrium Greens function framework. It is observed that electrostatic integrity remains intact even at such ultrashort Lg and physical scaling is eventually limited by direct source-drain tunneling. Benchmarking different TMD channels at various off-state current conditions shows potential for ultralow-leakage applications with small footprint, excellent energy efficiency, and moderate performance.

[1]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[2]  J. Kong,et al.  Integrated Circuits Based on Bilayer MoS , 2012 .

[3]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[4]  D. E. Nikonov,et al.  Understanding the feasibility of scaled III–V TFET for logic by bridging atomistic simulations and experimental results , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[5]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[6]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[7]  Ashok Kumar,et al.  Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement , 2012 .

[8]  G. Klimeck,et al.  Material Selection for Minimizing Direct Tunneling in Nanowire Transistors , 2012, IEEE Transactions on Electron Devices.

[9]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[10]  Sayeef Salahuddin,et al.  Dependence of intrinsic performance of transition metal dichalcogenide transistors on materials and number of layers at the 5 nm channel-length limit , 2013, 2013 IEEE International Electron Devices Meeting.

[11]  Jeffrey Bokor,et al.  Ultimate device scaling: Intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length , 2011, 2011 International Electron Devices Meeting.

[12]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[13]  M. Lundstrom,et al.  Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? , 2002, Digest. International Electron Devices Meeting,.

[14]  D. E. Nikonov,et al.  Uniform methodology for benchmarking beyond-CMOS logic devices , 2012, 2012 International Electron Devices Meeting.

[15]  K. Alam,et al.  Monolayer $\hbox{MoS}_{2}$ Transistors Beyond the Technology Road Map , 2012, IEEE Transactions on Electron Devices.

[16]  Edwin C. Kan,et al.  Armchair graphene nanoribbons: Electronic structure and electric-field modulation , 2008, 0803.1233.

[17]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[18]  N. Bhat,et al.  Bandstructure effects in ultra-thin-body double-gate field effect transistor : A fullband analysis , 2008 .

[19]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.