Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force.

A century after the celebrated Langevin paper [C.R. Seances Acad. Sci. 146, 530 (1908)] we study a Langevin-type approach to subdiffusion in the presence of time-dependent force fields. Using a subordination technique, we construct rigorously a stochastic Langevin process, whose probability density function is equal to the solution of the fractional Fokker-Planck equation with a time-dependent force. Our model provides physical insight into the nature of the corresponding process through the simulated trajectories. Moreover, the subordinated Langevin equation allows us to study subdiffusive dynamics both analytically and numerically via Monte Carlo methods.

[1]  M. Teuerle,et al.  Generalized Mittag-Leffler relaxation: clustering-jump continuous-time random walk approach. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Karina Weron,et al.  Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  F. Jenko,et al.  Langevin approach to fractional diffusion equations including inertial effects. , 2007, The journal of physical chemistry. B.

[4]  P. Hänggi,et al.  Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving. , 2007, Physical review letters.

[5]  Karina Weron,et al.  Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. Klafter,et al.  On the first passage time and leapover properties of Lévy motions , 2006, cond-mat/0611666.

[7]  Igor M. Sokolov,et al.  Field-induced dispersion in subdiffusion. , 2006 .

[8]  Karina Weron,et al.  Anomalous diffusion schemes underlying the Cole–Cole relaxation: The role of the inverse-time α-stable subordinator , 2006 .

[9]  E. Cox,et al.  Physical nature of bacterial cytoplasm. , 2006, Physical review letters.

[10]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[11]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[12]  J. Klafter,et al.  On the first passage of one-sided Lévy motions , 2004 .

[13]  John Waldron,et al.  The Langevin Equation , 2004 .

[14]  Hans-Peter Scheffler,et al.  Stochastic solution of space-time fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  J. Klafter,et al.  The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times , 2001, cond-mat/0202326.

[16]  E. Barkai,et al.  Fractional Fokker-Planck equation, solution, and application. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[18]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[20]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[21]  P. Couturier Japan , 1988, The Lancet.

[22]  M. Kac Integration in function spaces and some of its applications , 1980 .

[23]  W. Feller,et al.  An Introduction to Probability Theory and its Applications , 1958 .

[24]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[25]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[26]  Kiyosi Itô,et al.  On stochastic processes (I) , 1941 .