Enhanced Corrosion Resistance in Accident-Tolerant FeCrAl Alloy by Water-assisted Laser Surface Modification

[1]  Yufeng Wang,et al.  Surface microfabrication using coaxial waterjet assisted laser-induced plasma micromachining , 2021 .

[2]  Donghai Xu,et al.  Corrosion of FeCrAl alloys used as fuel cladding in nuclear reactors , 2021, Journal of Alloys and Compounds.

[3]  E. Han,et al.  Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water , 2021 .

[4]  N. Ren,et al.  Water-assisted femtosecond laser drilling of alumina ceramics , 2021 .

[5]  Xuefei Huang,et al.  Precipitation behavior and age hardening effect of the precipitates in a Fe-13Cr-4Al-2Mo-1.2Nb alloy , 2021 .

[6]  C. Jang,et al.  Corrosion behavior of stainless steels in simulated PWR primary water: The effect of composition and matrix phases , 2020 .

[7]  Yiyong Zhang,et al.  Effects of Nb-doping on the mechanical properties and high-temperature steam oxidation of annealing FeCrAl fuel cladding alloys , 2020 .

[8]  K. Terrani,et al.  Hydrothermal corrosion of 2nd generation FeCrAl alloys for accident tolerant fuel cladding , 2020 .

[9]  D. Bartels,et al.  Effect of radiation damage and water radiolysis on corrosion of FeCrAl alloys in hydrogenated water , 2020 .

[10]  Xuefei Huang,et al.  Cold-rolling & annealing process for nuclear grade wrought FeCrAl cladding alloy to enhance the strength and ductility , 2020 .

[11]  M. Gartia,et al.  Laser surface modifications of Fe-14Cr ferritic alloy for improved corrosion performance , 2020 .

[12]  K. Terrani,et al.  Comparison of steady and transient flow boiling critical heat flux for FeCrAl accident tolerant fuel cladding alloy, Zircaloy, and Inconel , 2019, International Journal of Heat and Mass Transfer.

[13]  Kurt A. Terrani,et al.  Uniform corrosion of FeCrAl alloys in LWR coolant environments , 2016 .

[14]  Lance Lewis Snead,et al.  Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys , 2015 .

[15]  A. Atrens,et al.  Corrosion behaviour of laser surface melted magnesium alloy AZ91D , 2014 .

[16]  S. Zinkle,et al.  Advanced Oxidation Resistant Iron-Based Alloys for LWR Fuel Cladding , 2014 .

[17]  Kurt A. Terrani,et al.  High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments , 2013 .

[18]  Satoru Kobayashi,et al.  Mapping of 475 °C embrittlement in ferritic Fe–Cr–Al alloys , 2010 .

[19]  P. Molian,et al.  Water-assisted laser thermal shock machining of alumina , 2007 .

[20]  A. Kruusing Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods , 2004 .

[21]  Arvi Kruusing,et al.  Underwater and water-assisted laser processing: Part 1-general features, steam cleaning and shock processing [review article] , 2004 .

[22]  H. Man,et al.  Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance , 1998 .

[23]  R. Webb,et al.  A transient micro-convection model of nucleate pool boiling , 1997 .

[24]  M. El-Genk,et al.  Liquid microlayer evaporation during nucleate boiling on the surface of a flat composite wall , 1994 .

[25]  H. Schmidt,et al.  Diffusion of cations in chromia layers grown on iron-base alloys , 1992 .

[26]  J. Robertson The mechanism of high temperature aqueous corrosion of stainless steels , 1991 .

[27]  R. Judd,et al.  A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation , 1976 .

[28]  P. J. Berenson Film-Boiling Heat Transfer From a Horizontal Surface , 1961 .

[29]  R. Greif,et al.  Heat Transfer to a Boiling Liquid—Mechanism and Correlations , 1959 .

[30]  N. Zuber,et al.  Dynamics of vapor bubbles and boiling heat transfer , 1955 .

[31]  J. Robertson The mechanism of high temperature aqueous corrosion of steel , 1989 .