A new hybrid‐mixed variational approach for Reissner–Mindlin plates. The MiSP model

A valuable variational approach for plate problems based on the Reissner–Mindlin theory is presented. The new MiSP (Mixed Shear Projected) approach is based on the Hellinger–Reissner variational principle, with a particular representation of transversal shear forces and transversal shear strains. The approximations of the shear forces are derived from those of the bending moments using the corresponding equilibrium relations. The shear strains are defined in terms of the edge tangential strains that are projected on the element degrees of freedom. Two finite elements are developed on the MiSP approach basis: 3-node triangular element MiSP3 and 4-node quadrilateral element MiSP4. Both elements can be considered as the most simple among the existent mixed elements. A modified MiSP model with a derived 4-node element is also presented. Numerical experiments are presented which show that the MiSP elements do not exhibit shear locking and give excellent results for thick and thin plates. They also pass the patch test for a general triangle and quadrilateral. © 1998 John Wiley & Sons, Ltd.

[1]  Gangan Prathap,et al.  Field‐ and edge‐consistency synthesis of A 4‐noded quadrilateral plate bending element , 1988 .

[2]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[3]  O. C. Zienkiewicz,et al.  Plate bending elements with discrete constraints: New triangular elements , 1990 .

[4]  L. Morley Skew plates and structures , 1963 .

[5]  Eugenio Oñate,et al.  A general methodology for deriving shear constrained Reissner‐Mindlin plate elements , 1992 .

[6]  Atef F. Saleeb,et al.  A mixed formulation of C0‐linear triangular plate/shell element—the role of edge shear constraints , 1988 .

[7]  Bruce M. Irons,et al.  An engineers' defence of the patch test , 1983 .

[8]  Irwan Katili,et al.  On a simple triangular reissner/mindlin plate element based on incompatible modes and discrete constraints , 1992 .

[9]  O. C. Zienkiewicz,et al.  The patch test—a condition for assessing FEM convergence , 1986 .

[10]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[11]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[12]  Robert L. Taylor,et al.  A triangular element based on Reissner‐Mindlin plate theory , 1990 .

[13]  P. Lardeur,et al.  Composite plate analysis using a new discrete shear triangular finite element , 1989 .

[14]  Rezak Ayad Éléments finis de plaque et coque en formulation mixte avec projection en cisaillement , 1993 .

[15]  Peter M. Pinsky,et al.  A mixed finite element formulation for Reissner–Mindlin plates based on the use of bubble functions , 1989 .

[16]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[17]  J. Aalto From Kirchhoff to Mindlin plate elements , 1988 .

[18]  I. Babuska,et al.  Benchmark computation and performance evaluation for a rhombic plate bending problem , 1989 .

[19]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[20]  O. C. Zienkiewicz,et al.  A robust triangular plate bending element of the Reissner–Mindlin type , 1988 .

[21]  Jean-Louis Batoz,et al.  Evaluation of a new quadrilateral thin plate bending element , 1982 .

[22]  M. M. Hrabok,et al.  A review and catalogue of plate bending finite elements , 1984 .

[23]  J. A. Stricklin,et al.  A rapidly converging triangular plate element , 1969 .

[24]  Pascal Lardeur Développement et évaluation de deux nouveaux éléments finis de plaques et coques composites avec influence du cisaillement transversal , 1990 .

[25]  J. Z. Zhu,et al.  The finite element method , 1977 .

[26]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[27]  G. Dhatt,et al.  Modélisation des structures par éléments finis , 1990 .

[28]  Abdur Razzaque,et al.  Program for triangular bending elements with derivative smoothing , 1973 .

[29]  Atef F. Saleeb,et al.  An efficient quadrilateral element for plate bending analysis , 1987 .

[30]  J. Donea,et al.  A modified representation of transverse shear in C 0 quadrilateral plate elements , 1987 .

[31]  Rezak Ayad,et al.  Un élément quadrilatéral de plaque basé sur une formulation mixte-hybride avec projection en cisaillement , 1995 .

[32]  P. Lardeur,et al.  A discrete shear triangular nine D.O.F. element for the analysis of thick to very thin plates , 1989 .