RLS-based fault-tolerant tracking control of Multirotor Aerial Vehicles

This paper presents a fault-tolerant PD tracking system for Multirotor Aerial Vehicles (MAV) based on a novel Recursive Least Squares (RLS) Fault Detection and Isolation (FDI) algorithm utilized to diagnose propulsion system faults. As a test platform we investigate an octorotor model, including rigid body dynamics, the gyroscopic effect and motor dynamics. A hover configuration control is extended into an adaptive, fault-tolerant PD tracking controller. The approach is validated within a simulation study that includes a severe triple rotor fault scenario.

[1]  Youmin Zhang,et al.  Bibliographical review on reconfigurable fault-tolerant control systems , 2003, Annu. Rev. Control..

[2]  Nedim Osmic,et al.  Multirotor Aerial Vehicle modeling in Modelica , 2017, Modelica.

[3]  Inseok Hwang,et al.  A Survey of Fault Detection, Isolation, and Reconfiguration Methods , 2010, IEEE Transactions on Control Systems Technology.

[4]  Rolf Isermann,et al.  Identification of Dynamic Systems , 2011 .

[5]  Vijay Kumar,et al.  Design, modeling, estimation and control for aerial grasping and manipulation , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Weixin Han,et al.  Fault estimation for a quadrotor unmanned aerial vehicle by integrating the parity space approach with recursive least squares , 2018 .

[7]  Vijay Kumar,et al.  Cooperative manipulation and transportation with aerial robots , 2009, Auton. Robots.

[8]  Youmin Zhang,et al.  Fault Tolerant Model Predictive Control of Quad-Rotor Helicopters with Actuator Fault Estimation , 2011 .

[9]  Nicholas Roy,et al.  Towards A Swarm of Agile Micro Quadrotors , 2013 .

[10]  Chunhua Zhang,et al.  The application of small unmanned aerial systems for precision agriculture: a review , 2012, Precision Agriculture.

[11]  S. Lesecq,et al.  A multi-observer switching strategy for fault-tolerant control of a quadrotor helicopter , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[12]  Dan Stefanoiu,et al.  Fault Detection and Diagnosis Using Parameter Estimation with Recursive Least Squares , 2013, 2013 19th International Conference on Control Systems and Computer Science.

[13]  Nicholas Roy,et al.  Construction of Cubic Structures with Quadrotor Teams , 2012 .

[14]  E. V. Oort,et al.  Online Aerodynamic Model Structure Selection and Parameter Estimation for Fault Tolerant Control , 2010 .

[15]  Sauro Longhi,et al.  A Diagnostic Thau Observer for a Class of Unmanned Vehicles , 2012, J. Intell. Robotic Syst..

[16]  Darius Burschka,et al.  Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue , 2012, IEEE Robotics & Automation Magazine.

[17]  Roland Siegwart,et al.  PID vs LQ control techniques applied to an indoor micro quadrotor , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[18]  Ivan Petrovic,et al.  Detailed octorotor modeling and PD control , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[19]  Youmin Zhang,et al.  Fault tolerant control of a quadrotor UAV using sliding mode control , 2010, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[20]  Vijay Kumar,et al.  Minimum snap trajectory generation and control for quadrotors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Roland Siegwart,et al.  Design and control of an indoor micro quadrotor , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[22]  Robert Mahony,et al.  Real-time model predictive control for quadrotors , 2014 .

[23]  Peter I. Corke,et al.  Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor , 2012, IEEE Robotics & Automation Magazine.