Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy

In this paper, electrochemical impedance spectroscopy (EIS) is used to resolve various sources of polarization loss in a pure hydrogen-fueled polymer electrolyte fuel cell (PEFC). EIS data are fitted to a fuel cell model in which the catalyst layer physics are accurately represented by a transmission line model. Extracted parameters include cell ohmic resistance, catalyst layer electrolyte resistance, and double-layer capacitance. The results showed that the catalyst layer electrolyte resistance for a state-of-the-art electrode (47 wt % Pt on Vulcan XC-72 carbon, 0.8 Nation (1100EW)-to-carbon weight ratio, 13 μm thick) at 80°C and fully humidified conditions was approximately 100 mΩ-cm 2 ; this translates to a dc voltage loss of about 33 mV at a current density of 1 A/cm 2 . Similar results were obtained for two experimental methods, one using H 2 (anode) and O 2 (cathode gas feed) and another with H, and N 2 supplies, and for two cell active areas, 5 and 50 cm 2 . The measured catalyst layer electrolyte resistance increased with decreasing ionomer concentration in the electrode, as expected. We also observed that the real impedance measured at 1 kHz, often interpreted as the ohmic resistance in the cell, can include contributions from the electrolyte in the catalyst layer.