High compressibility of a flexible metal–organic framework

The metal–organic framework NH2-MIL-53(In) shows a very high amorphization resistance (>20 GPa) together with a large compressibility (K0 = 10.9 GPa).

[1]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[2]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[3]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[4]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[5]  C. Morrison,et al.  The effect of high pressure on MOF-5: guest-induced modification of pore size and content at high pressure. , 2011, Angewandte Chemie.

[6]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[7]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[8]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[9]  C. Serre,et al.  Using pressure to provoke the structural transition of metal-organic frameworks. , 2010, Angewandte Chemie.

[10]  F. Kapteijn,et al.  A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.

[11]  Lei Zhang,et al.  Amorphization of metal-organic framework MOF-5 at unusually low applied pressure , 2010 .

[12]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[13]  K. Chapman,et al.  Pressure-induced amorphization and porosity modification in a metal-organic framework. , 2009, Journal of the American Chemical Society.

[14]  A. Cheetham,et al.  The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. , 2009, Angewandte Chemie.

[15]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[16]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[17]  R. Angel,et al.  Pressure-induced cooperative bond rearrangement in a zinc imidazolate framework: a high-pressure single-crystal X-ray diffraction study. , 2009, Journal of the American Chemical Society.

[18]  K. Chapman,et al.  Guest-dependent high pressure phenomena in a nanoporous metal-organic framework material. , 2008, Journal of the American Chemical Society.

[19]  Andrzej Katrusiak,et al.  High-pressure crystallography. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[20]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[21]  C. Serre,et al.  A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. , 2006, Chemical communications.

[22]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[23]  Douglas A. Loy,et al.  Tailored Porous Materials , 1999 .

[24]  S. Block,et al.  Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence , 1972, Science.

[25]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .