Orthogonal layout with optimal face complexity

We study a problem motivated by rectilinear schematization of geographic maps. Given a biconnected plane graph G and an integer $$k\ge 0$$, does G have a strict-orthogonal drawing with at most k reflex angles per face? For $$k=0$$ the problem is equivalent to realizing each face as a rectangle. The problem can be reduced to a max-flow problem in some linear-size nonplanar network, but the best solutions require $$\varOmega n^{1.5} \log n\log k$$ time. We describe a graph matching approach that can decide strict-orthogonal drawability for arbitrary reflex complexity k in $$Onk^{1.5}$$ time, which is faster for constant values of k. In contrast, if the embedding is not fixed, we prove that it is NP-complete to decide whether a planar graph admits a strict-orthogonal drawing with reflex face complexity 4.

[1]  Michael Jünger,et al.  The Open Graph Drawing Framework (OGDF) , 2013, Handbook of Graph Drawing and Visualization.

[2]  Michael Kaufmann,et al.  Drawing High Degree Graphs with Low Bend Numbers , 1995, GD.

[3]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[4]  Michael Kaufmann,et al.  Drawing graphs: methods and models , 2001 .

[5]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[6]  Ignaz Rutter,et al.  Orthogonal Graph Drawing with Flexibility Constraints , 2010, Algorithmica.

[7]  Ignaz Rutter,et al.  Optimal Orthogonal Graph Drawing with Convex Bend Costs , 2012, ACM Trans. Algorithms.

[8]  Md. Saidur Rahman,et al.  No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs , 2003, IEICE Trans. Inf. Syst..

[9]  Takao Nishizeki,et al.  Inner Rectangular Drawings of Plane Graphs , 2004, Int. J. Comput. Geom. Appl..

[10]  Mark de Berg,et al.  Optimal Binary Space Partitions for Segments in the Plane , 2012, Int. J. Comput. Geom. Appl..

[11]  Emden R. Gansner,et al.  Graphviz - Open Source Graph Drawing Tools , 2001, GD.

[12]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[13]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[14]  Waldo R. Tobler Thirty Five Years of Computer Cartograms , 2004 .

[15]  Michael Kaufmann,et al.  yFiles - Visualization and Automatic Layout of Graphs , 2001, Graph Drawing Software.

[16]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[17]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[18]  Charles E. Leiserson,et al.  Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[19]  Andreas Karrenbauer,et al.  Accelerated Bend Minimization , 2012, J. Graph Algorithms Appl..