Zero-Field Quantum Tunneling of the Magnetization in a Series of High Energy-Barrier Dysprosium (III) Single-Molecule Magnets

Energy barriers to magnetisation reversal (Ueff) in single-molecule magnets (SMMs) have vastly increased recently, but only for the dysprosocenium SMM [Dy(Cpttt)2][B(C6F5)4] (Cpttt = C5H2tBu3-1,2,4) has this translated into a considerable increase in magnetic hysteresis temperatures. The lack of concomitant increases in hysteresis temperatures with Ueff values is due to efficient magnetic relaxation at zero-field, referred to as quantum tunnelling of the magnetisation (QTM); however, the exact nature of this phenomenon is unknown. Recent hypotheses suggest that both transverse dipolar magnetic fields and hyperfine coupling play a significant role in this process for Dy(III) SMMs. Here, by studying the compounds [Dy(tBuO)Cl(THF)5][BPh4] (1), [K(18-crown-6-ether)(THF)2][Dy(BIPM)2] (2, BIPM = C{PPh2NSiMe3}2), and [Dy(Cpttt)2][B(C6F5)4] (3), we show conclusively that neither of these processes are the main contributor to zero-field QTM for Dy(III) SMMs, and suggest that its origin instead owes to molecular flexibility. By analysing the vibrational modes of the three molecules, we show that the modes that most impact the magnetic ion occur at the lowest energies for 1, at intermediate energies for 2 and at higher energies for 3, in correlation with their ability to retain magnetisation. Therefore, we conclude that SMM performance could be improved by employing more rigid ligands with higher-energy metal-ligand vibrational modes.

[1]  H. Wende,et al.  Molecular Nanomagnets , 2020, SpringerBriefs in Applied Sciences and Technology.

[2]  Yan‐Zhen Zheng,et al.  Field- and temperature-dependent quantum tunnelling of the magnetisation in a large barrier single-molecule magnet , 2018, Nature Communications.

[3]  L. Chibotaru,et al.  Spin-lattice relaxation of magnetic centers in molecular crystals at low temperature , 2017, 1704.06699.

[4]  David P. Mills,et al.  Molecular magnetic hysteresis at 60 kelvin in dysprosocenium , 2017, Nature.

[5]  R. Sessoli Materials science: Magnetic molecules back in the race , 2017, Nature.

[6]  W. Wernsdorfer,et al.  Nuclear Spin Isomers: Engineering a Et4 N[DyPc2 ] Spin Qudit. , 2017, Angewandte Chemie.

[7]  E. Coronado,et al.  Determining Key Local Vibrations in the Relaxation of Molecular Spin Qubits and Single-Molecule Magnets. , 2017, The journal of physical chemistry letters.

[8]  B. le Guennic,et al.  Isotopically enriched polymorphs of dysprosium single molecule magnets. , 2017, Chemical communications.

[9]  S. Sanvito,et al.  The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets , 2017, Nature Communications.

[10]  Yan‐Zhen Zheng,et al.  On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. , 2016, Angewandte Chemie.

[11]  N. Chilton,et al.  A Low-Symmetry Dysprosium Metallocene Single-Molecule Magnet with a High Anisotropy Barrier. , 2016, Angewandte Chemie.

[12]  W. Wernsdorfer,et al.  A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. , 2016, Journal of the American Chemical Society.

[13]  G. Rajaraman,et al.  An air-stable Dy(iii) single-ion magnet with high anisotropy barrier and blocking temperature , 2016, Chemical science.

[14]  Conrad A. P. Goodwin,et al.  Salt metathesis versus protonolysis routes for the synthesis of silylamide Hauser base (R2NMgX; X = halogen) and amido-Grignard (R2NMgR) complexes. , 2016, Dalton transactions.

[15]  Jiang Liu,et al.  Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. , 2016, Journal of the American Chemical Society.

[16]  A. J. Blake,et al.  A monometallic lanthanide bis(methanediide) single molecule magnet with a large energy barrier and complex spin relaxation behaviour , 2015, Chemical science.

[17]  Robert Kohl,et al.  Electron Paramagnetic Resonance Of Transition Ions , 2016 .

[18]  R. Sessoli Toward the Quantum Computer: Magnetic Molecules Back in the Race , 2015, ACS central science.

[19]  Jonathan L. Brosmer,et al.  In situ synthesis of lanthanide complexes supported by a ferrocene diamide ligand: extension to redox-active lanthanide ions , 2015 .

[20]  K. Pedersen,et al.  Design of Single-Molecule Magnets: Insufficiency of the Anisotropy Barrier as the Sole Criterion. , 2015, Inorganic chemistry.

[21]  B. le Guennic,et al.  Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex. , 2015, Angewandte Chemie.

[22]  A. Soncini,et al.  Single molecule magnetism in a family of mononuclear β-diketonate lanthanide(III) complexes: rationalization of magnetic anisotropy in complexes of low symmetry , 2013 .

[23]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[24]  Gang Su,et al.  A mononuclear dysprosium complex featuring single-molecule-magnet behavior. , 2010, Angewandte Chemie.

[25]  K. Bernot,et al.  Determination of the Nature of Exchange Interactions in the 3d-4f Magnetic Chain {[Cu(salen)Pr(hfac)3]2(L)}n (L = 4,4'-Bipyridine, Pyrazine) , 2010 .

[26]  C. Reed,et al.  The basicity of unsaturated hydrocarbons as probed by hydrogen-bond-acceptor ability: bifurcated N-H+ ...pi hydrogen bonding. , 2008, Chemistry.

[27]  P. Hitchcock,et al.  Lanthanum does form stable molecular compounds in the +2 oxidation state. , 2008, Angewandte Chemie.

[28]  F. Jaroschik,et al.  Synthesis and Reactivity of Organometallic Complexes of Divalent Thulium with Cyclopentadienyl and Phospholyl Ligands , 2007 .

[29]  W. Wernsdorfer,et al.  Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. , 2005, Angewandte Chemie.

[30]  W. Wernsdorfer,et al.  Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. , 2005, Journal of the American Chemical Society.

[31]  W. Wernsdorfer,et al.  Single-molecule magnets: a large Mn30 molecular nanomagnet exhibiting quantum tunneling of magnetization. , 2004, Journal of the American Chemical Society.

[32]  R. Sessoli,et al.  Quantum tunneling of magnetization and related phenomena in molecular materials. , 2003, Angewandte Chemie.

[33]  D. Loss,et al.  Spin tunneling and phonon-assisted relaxation in Mn₁₂-acetate , 1999, cond-mat/9907154.

[34]  David,et al.  Gaussian basis sets for use in correlated molecular calculations . Ill . The atoms aluminum through argon , 1999 .

[35]  E. Chudnovsky,et al.  Thermally activated resonant magnetization tunneling in molecular magnets: Mn 12 Ac and others , 1997, cond-mat/9805057.

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  L. Thomas,et al.  Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets , 1996, Nature.

[38]  Friedman,et al.  Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. , 1996, Physical review letters.

[39]  Shizhong Zhang,et al.  Silyl Cations in the Solid and in Solution , 1994 .

[40]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[41]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[42]  Michael Dolg,et al.  Relativistic and correlation effects for element 105 (hahnium, Ha): a comparative study of M and MO (M = Nb, Ta, Ha) using energy-adjusted ab initio pseudopotentials , 1993 .

[43]  Paul von Ragué Schleyer,et al.  Pseudopotential approaches to Ca, Sr, and Ba hydrides. Why are some alkaline earth MX2 compounds bent? , 1991 .

[44]  J. Ziller,et al.  Synthesis and structure of the cationic tert-butoxide complexes Y3(OR)7Cl(THF)3+, Y2(OR)4Cl(THF)4+, and Y(OR)Cl(THF)5+: representatives of a new class of yttrium alkoxides , 1990 .

[45]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[46]  R. Appel,et al.  Darstellung silylierter Alkylen‐bisiminophosphorane und ihre Cyclisierung mit Phosphor(V)‐fluoriden , 1974 .

[47]  M. Schlosser,et al.  Transmetalation and Double Metal Exchange: A Convenient Route to Organolithium Compounds of the Benzyl and Allyl Type , 1973 .