L2-estimates for the evolving surface finite element method

In this paper we consider the evolving surface finite element method for the advection and diffusion of a conserved scalar quantity on a moving surface. In an earlier paper using a suitable variational formulation in time dependent Sobolev space we proposed and analysed a finite element method using surface finite elements on evolving triangulated surfaces. An optimal order H¹ -error bound was proved for linear finite elements. In this work we prove the optimal error bound in L² (Γ(t)) uniformly in time.

[1]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[2]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[3]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[4]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..

[5]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[6]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[7]  Colin B. Macdonald,et al.  Level Set Equations on Surfaces via the Closest Point Method , 2008, J. Sci. Comput..

[8]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[9]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[10]  A. Voigt,et al.  PDE's on surfaces---a diffuse interface approach , 2006 .

[11]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[12]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[13]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[14]  Qiang Du,et al.  A finite volume method on general surfaces and its error estimates , 2009 .

[15]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[16]  Lili Ju,et al.  A posteriori error estimates for finite volume approximations of elliptic equations on general surfaces , 2009 .

[17]  Donna A. Calhoun,et al.  A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes , 2009, SIAM J. Sci. Comput..

[18]  Charles M. Elliott,et al.  An Eulerian approach to transport and diffusion on evolving implicit surfaces , 2009, Comput. Vis. Sci..

[19]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[20]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[21]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[22]  Charles M. Elliott,et al.  ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO AN ADVECTION DIFFUSION EQUATION ON A MOVING SURFACE , 2009 .

[23]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[24]  C. M. Elliott,et al.  Numerical computation of advection and diffusion on evolving diffuse interfaces , 2011 .

[25]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[26]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[27]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[28]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[29]  Charles M. Elliott,et al.  Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method , 2008, J. Comput. Phys..

[30]  J. Sethian,et al.  Transport and diffusion of material quantities on propagating interfaces via level set methods , 2003 .

[31]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[32]  Charles M. Elliott,et al.  Eulerian finite element method for parabolic PDEs on implicit surfaces , 2008 .