Enumeration and Generation of Initially Connected Deterministic Finite Automata

The representation of combinatorial objects is decisive for the feasibility of several enumerative tasks. In this work, we present a (unique) string representation for (complete) initially-connected deterministic automata (ICDFA’s) with n states over an alphabet of k symbols. For these strings we give a regular expression and show how they are adequate for exact and random generation, allow an alternative way for enumeration and lead to an upper bound for the number of ICDFA’s. The exact generation algorithm can be used to partition the set of ICDFA’s in order to parallelize the counting of minimal automata (and thus of regular languages). A uniform random generator for ICDFA’s is presented that uses a table of pre-calculated values. Based on the same table, an optimal coding for ICDFA’s is obtained. We also establish an explicit relationship between our method and the one used by Nicaud et al..

[1]  Michael A. Harrison A census finite automata , 1964 .

[2]  Frank Harary,et al.  Enumeration of Finite Automata , 1967, Inf. Control..

[3]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[4]  Frank Harary,et al.  Graphical enumeration , 1973 .

[5]  Robert W. Robinson Counting strongly connected finite automata , 1985 .

[6]  Editors , 1986, Brain Research Bulletin.

[7]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[8]  Cyril Nicaud,et al.  Etude du comportement en moyenne des automates finis et des langages rationnels , 2000 .

[9]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[10]  Jeffrey Shallit,et al.  On the Number of Distinct Languages Accepted by Finite Automata with n States , 2002, DCFS.

[11]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[12]  M. Domaratzki Combinatorial Interpretations of a Generalization of the Genocchi Numbers , 2004 .

[13]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[14]  Nelma Moreira,et al.  Interactive manipulation of regular objects with FAdo , 2005, ITiCSE '05.

[15]  Nelma Moreira,et al.  On the density of languages representing finite set partitions. , 2005 .

[16]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[17]  Nelma Moreira,et al.  On the Representation of Finite Automata , 2005, DCFS.

[18]  Jean-Marc Champarnaud,et al.  Random generation of DFAs , 2005, Theor. Comput. Sci..

[19]  Rogério Reis,et al.  Efficient representation of integer sets , 2006 .

[20]  Michael Domaratzki,et al.  Enumeration of Formal Languages , 2006, Bull. EATCS.

[21]  Nelma Moreira,et al.  Enumeration and generation with a string automata representation , 2007, Theor. Comput. Sci..

[22]  Valery A. Liskovets,et al.  Exact enumeration of acyclic deterministic automata , 2006, Discret. Appl. Math..

[23]  Frédérique Bassino,et al.  Enumeration and random generation of accessible automata , 2007, Theor. Comput. Sci..