Adjoint Estimation of the Variation in Model Functional Output due to the Assimilation of Data

Abstract A parametric approach to the adjoint estimation of the variation in model functional output due to the assimilation of data is considered as a tool to analyze and develop observation impact measures. The parametric approach is specialized to a linear analysis scheme and it is used to derive various high-order approximation equations. This framework includes the Kalman filter and incremental three-and four-dimensional variational data assimilation schemes implementing a single outer loop iteration. Distinction is made between Taylor series methods and numerical quadrature methods. The novel quadrature approximations require minimal additional software development and are suitable for testing and implementation at operational numerical weather prediction centers where a data assimilation system (DAS) and the associated adjoint DAS are in place. Their potential use as tools for observation impact estimates needs to be further investigated. Preliminary numerical experiments are provided using the fif...

[1]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[2]  John Derber,et al.  A Global Oceanic Data Assimilation System , 1989 .

[3]  R. Daley Atmospheric Data Analysis , 1991 .

[4]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[5]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[6]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[7]  Robert Atlas,et al.  Atmospheric Observations and Experiments to Assess Their Usefulness in Data Assimilation , 1997 .

[8]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[9]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[10]  Max J. Suarez,et al.  The Impact of Detailed Snow Physics on the Simulation of Snow Cover and Subsurface Thermodynamics at Continental Scales , 2001 .

[11]  T. Bergot,et al.  Sensitivity to observations applied to FASTEX cases , 2001 .

[12]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[13]  Layne T. Watson,et al.  Theory of Globally Convergent Probability-One Homotopies for Nonlinear Programming , 2000, SIAM J. Optim..

[14]  R. Purser,et al.  Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances , 2002 .

[15]  Ionel M. Navon,et al.  Second-Order Information in Data Assimilation* , 2002 .

[16]  A. Joly,et al.  Adjoint sensitivity of the forecast to TOVS observations , 2002 .

[17]  R. Giering,et al.  Generating the tangent linear and adjoint models of the DAO finite volume GCM's dynamical core by means of TAF , 2003 .

[18]  Rolf H. Langland,et al.  Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system , 2004 .

[19]  John Derber,et al.  Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model. , 2004, Applied optics.

[20]  Shian‐Jiann Lin A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .

[21]  Rolf H. Langland,et al.  Observation Impact during the North Atlantic TReC—2003 , 2005 .

[22]  Cecelia DeLuca,et al.  Design and Implementation of Components in the Earth System Modeling Framework , 2005, Int. J. High Perform. Comput. Appl..

[23]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[24]  Dianne P. O'Leary,et al.  Homotopy optimization methods for global optimization. , 2005 .

[25]  R. Todling,et al.  General characteristics of stratospheric singular vectors , 2007 .

[26]  Y. Trémolet First-order and higher-order approximations of observation impact , 2007 .

[27]  R. Errico,et al.  Examination of various-order adjoint-based approximations of observation impact , 2007 .

[28]  Roger Daley,et al.  Observation and background adjoint sensitivity in the adaptive observation‐targeting problem , 2007 .

[29]  Jean-Noël Thépaut,et al.  The value of observations. I: Data denial experiments for the Atlantic and the Pacific , 2007 .

[30]  R. Errico Interpretations of an adjoint-derived observational impact measure , 2007 .

[31]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[32]  E. Kalnay,et al.  Estimating observation impact without adjoint model in an ensemble Kalman filter , 2008 .

[33]  R. Gelaro,et al.  Observation Sensitivity Calculations Using the Adjoint of the Gridpoint Statistical Interpolation (GSI) Analysis System , 2008 .

[34]  D. Daescu On the Sensitivity Equations of Four-Dimensional Variational (4D-Var) Data Assimilation , 2008 .

[35]  Yannick Trémolet,et al.  Computation of observation sensitivity and observation impact in incremental variational data assimilation , 2008 .