A novel Bayesian adaptive method for mapping the visual field

Measuring visual functions such as light and contrast sensitivity, visual acuity, reading speed, and crowding across retinal locations provides visual-field maps (VFMs) that are extremely valuable for detecting and managing eye diseases. Although mapping light sensitivity is a standard glaucoma test, the measurement is often noisy (Keltner et al., 2000). Mapping other visual functions is even more challenging. To improve the precision of light-sensitivity mapping and enable other VFM assessments, we developed a novel hybrid Bayesian adaptive testing framework, the qVFM method. The method combines a global module for preliminary assessment of the VFM's shape and a local module for assessing individual visual-field locations. This study validates the qVFM method in measuring light sensitivity across the visual field. In both simulation and psychophysics studies, we sampled 100 visual-field locations (60° × 60°) and compared the performance of qVFM with the qYN procedure (Lesmes et al., 2015) that measured light sensitivity at each location independently. In the simulations, a simulated observer was tested monocularly for 1,000 runs with 1,200 trials/run, to compare the accuracy and precision of the two methods. In the experiments, data were collected from 12 eyes (six left, six right) of six human subjects. Subjects were cued to report the presence or absence of a target stimulus, with the luminance and location of the target adaptively selected in each trial. Both simulations and a psychological experiment showed that the qVFM method can provide accurate, precise, and efficient mapping of light sensitivity. This method can be extended to map other visual functions, with potential clinical signals for monitoring vision loss, evaluating therapeutic interventions, and developing effective rehabilitation for low vision.

[1]  A Heijl,et al.  Test-retest variability in glaucomatous visual fields. , 1989, American journal of ophthalmology.

[2]  C A Johnson,et al.  Properties of staircase procedures for estimating thresholds in automated perimetry. , 1992, Investigative ophthalmology & visual science.

[3]  Fiona J Rowe,et al.  Detection of Visual Field Loss in Pituitary Disease: Peripheral Kinetic Versus Central Static , 2015, Neuro-ophthalmology.

[4]  Luke X. Chong,et al.  A New SITA Perimetric Threshold Testing Algorithm: Construction and a Multicenter Clinical Study. , 2019, American journal of ophthalmology.

[5]  M. Easterbrook,et al.  The use of Amsler grids in early chloroquine retinopathy. , 1984, Ophthalmology.

[6]  Jay I. Myung,et al.  A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function , 2016, Journal of vision.

[7]  Ian Murray,et al.  Saccadic Vector Optokinetic Perimetry (SVOP): A novel technique for automated static perimetry in children using eye tracking , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[8]  Chris A Johnson,et al.  A History of Perimetry and Visual Field Testing , 2011, Optometry and vision science : official publication of the American Academy of Optometry.

[9]  A. Watson,et al.  QUEST+: A general multidimensional Bayesian adaptive psychometric method. , 2017, Journal of vision.

[10]  Chris Visscher,et al.  Effects of Limited Peripheral Vision on Shuttle Sprint Performance of Soccer Players , 2005, Perceptual and motor skills.

[11]  E. Werner,et al.  Variability of static visual threshold responses in patients with elevated IOPs. , 1982, Archives of ophthalmology.

[12]  Advanced Glaucoma Intervention Study. 2. Visual field test scoring and reliability. , 1994, Ophthalmology.

[13]  Chang-Bing Huang,et al.  qCSF in clinical application: efficient characterization and classification of contrast sensitivity functions in amblyopia. , 2010, Investigative ophthalmology & visual science.

[14]  R. P. Mills,et al.  Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease. , 2006, American journal of ophthalmology.

[15]  Zhong-Lin Lu,et al.  Developing Bayesian adaptive methods for estimating sensitivity thresholds (d′) in Yes-No and forced-choice tasks , 2015, Front. Psychol..

[16]  William F. Hoyt Eye Signs and Symptoms in Brain Tumors , 1977 .

[17]  H H Hunt,et al.  Threshold variation in automated perimetry. , 1993, Survey of ophthalmology.

[18]  Michael Wall,et al.  Repeatability of automated perimetry: a comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. , 2009, Investigative ophthalmology & visual science.

[19]  Scott Whyte,et al.  Perimetric homonymous visual field loss post-stroke , 2007, Journal of Clinical Neuroscience.

[20]  Lester C. Loschky,et al.  The contributions of central versus peripheral vision to scene gist recognition. , 2009, Journal of vision.

[21]  B C Chauhan,et al.  Comparison of conventional and high-pass resolution perimetry in a prospective study of patients with glaucoma and healthy controls. , 1999, Archives of ophthalmology.

[22]  Luis A. Lesmes,et al.  Bayesian adaptive estimation of threshold versus contrast external noise functions: The quick TvC method , 2006, Vision Research.

[23]  S. Graham,et al.  Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. , 1998, Investigative ophthalmology & visual science.

[24]  L. Frisén,et al.  High-pass resolution perimetry , 1993, Documenta Ophthalmologica.

[25]  David Wittenburg Evaluation of the Ticket to Work Program Assessment of PostRollout Implementation and Early Impacts , 2007 .

[26]  Rizwan Malik,et al.  Contrast Sensitivity Perimetry and Clinical Measures of Glaucomatous Damage , 2014, Optometry and vision science : official publication of the American Academy of Optometry.

[27]  C. Johnson,et al.  Screening for glaucomatous visual field loss with frequency-doubling perimetry. , 1997, Investigative ophthalmology & visual science.

[28]  P.EWEN KING-SMITH,et al.  PII: S0042-6989(96)00310-0 , 1997 .

[29]  A. Ramé [Age-related macular degeneration]. , 2006, Revue de l'infirmiere.

[30]  Rocío Alcalá-Quintana,et al.  A comparison of fixed-step-size and Bayesian staircases for sensory threshold estimation. , 2007, Spatial vision.

[31]  Dennis M. Levi,et al.  Crowding in Peripheral Vision: Why Bigger Is Better , 2009, Current Biology.

[32]  William H Swanson,et al.  Choice of Stimulus Range and Size Can Reduce Test-Retest Variability in Glaucomatous Visual Field Defects. , 2014, Translational vision science & technology.

[33]  Preeti Verghese,et al.  The psychophysics of visual search , 2000, Vision Research.

[34]  Igor Kononenko,et al.  Machine learning for medical diagnosis: history, state of the art and perspective , 2001, Artif. Intell. Medicine.

[35]  Zhang Huicheng Screening for glaucomatous visual field loss with frequency-doubling perimetry , 2002 .

[36]  Luis A. Lesmes,et al.  Efficient assessment of the time course of perceptual sensitivity change , 2019, Vision Research.

[37]  Aart C Kooijman,et al.  Relationship between contrast sensitivity and spherical aberration: Comparison of 7 contrast sensitivity tests with natural and artificial pupils in healthy eyes , 2009, Journal of cataract and refractive surgery.

[38]  R. Rosenholtz,et al.  A summary-statistic representation in peripheral vision explains visual crowding. , 2009, Journal of vision.

[39]  R A Applegate,et al.  Corneal aberrations and visual performance after radial keratotomy. , 1998, Journal of refractive surgery.

[40]  Luis A. Lesmes,et al.  Bayesian adaptive estimation of the sensory memory decay function: the quick Partial Report method , 2014 .

[41]  J L Keltner,et al.  Variability of quantitative automated perimetry in normal observers. , 1986, Ophthalmology.

[42]  Zhong-Lin Lu,et al.  qPR: An adaptive partial-report procedure based on Bayesian inference , 2016, Journal of vision.

[43]  Robert N Weinreb,et al.  The glaucoma research community and FDA look to the future: a report from the NEI/FDA CDER Glaucoma Clinical Trial Design and Endpoints Symposium. , 2009, Investigative ophthalmology & visual science.

[44]  R. Kardon,et al.  Pupil perimetry. , 1992, Current opinion in ophthalmology.

[45]  Mark A. Pitt,et al.  Planning Beyond the Next Trial in Adaptive Experiments: A Dynamic Programming Approach , 2017, Cogn. Sci..

[46]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[47]  M. Leek Adaptive procedures in psychophysical research , 2001, Perception & psychophysics.

[48]  R A Applegate,et al.  Changes in corneal wavefront aberrations with aging. , 1999, Investigative ophthalmology & visual science.

[49]  B. Treutwein Adaptive psychophysical procedures , 1995, Vision Research.

[50]  B C Chauhan,et al.  Test-retest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. , 1999, Investigative ophthalmology & visual science.

[51]  M Schulzer,et al.  Errors in the diagnosis of visual field progression in normal-tension glaucoma. , 1994, Ophthalmology.

[52]  A H Israel,et al.  [Color perimetry]. , 1971, Archivos de oftalmologia de Buenos Aires.

[53]  B. Joondeph,et al.  Variation in visual field measurements with an automated perimeter. , 1984, American journal of ophthalmology.

[54]  J. Palmer,et al.  Measuring the effect of attention on simple visual search. , 1993, Journal of experimental psychology. Human perception and performance.

[55]  P A Sample,et al.  Color perimetry for assessment of primary open-angle glaucoma. , 1990, Investigative ophthalmology & visual science.

[56]  Chris A Johnson,et al.  Comparison of the new perimetric GATE strategy with conventional full-threshold and SITA standard strategies. , 2009, Investigative ophthalmology & visual science.

[57]  William H. Swanson,et al.  Between-Subject Variability in Healthy Eyes as a Primary Source of Structural–Functional Discordance in Patients With Glaucoma , 2016, Investigative ophthalmology & visual science.

[58]  C. Johnson,et al.  Which method of flicker perimetry is most effective for detection of glaucomatous visual field loss? , 1997, Investigative ophthalmology & visual science.

[59]  Chris A. Johnson,et al.  CONFIRMATION OF VISUAL FIELD ABNORMALITIES IN THE OCULAR HYPERTENSION TREATMENT STUDY (OHTS) , 1999 .

[60]  Eiichi Sato,et al.  Combined use of SLO microperimetry and OCT for retinal functional and structural testing , 2006, Graefe's Archive for Clinical and Experimental Ophthalmology.

[61]  P. Lennie,et al.  Visual Impairments: Determining Eligibility for Social Security Benefits , 2002 .

[62]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[63]  G. Lindgren,et al.  Normal variability of static perimetric threshold values across the central visual field. , 1987, Archives of ophthalmology.

[64]  Joanne M. Wood,et al.  Closed-Road Circuit Age and Visual Impairment Decrease Driving Performance as Measured on a , 2005 .

[65]  W A Simpson The step method: A new adaptive psychophysical procedure , 1989, Perception & psychophysics.

[66]  Alexander Strand,et al.  Identifying SSA's Sequential Disability Determination Steps Using Administrative Data , 2013 .

[67]  F A Wichmann,et al.  Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit , 2001 .

[68]  Robert N Weinreb,et al.  Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function. , 2011, Investigative ophthalmology & visual science.

[69]  P A Sample,et al.  Progressive color visual field loss in glaucoma. , 1992, Investigative ophthalmology & visual science.

[70]  J Katz,et al.  Rate of progression in open-angle glaucoma estimated from cross-sectional prevalence of visual field damage. , 1996, American journal of ophthalmology.

[71]  Alexander M. Mood,et al.  A Method for Obtaining and Analyzing Sensitivity Data , 1948 .

[72]  S. Markowitz,et al.  Principles of modern low vision rehabilitation. , 2006, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[73]  Barbara Anne Dosher,et al.  Evaluating the performance of the staircase and quick Change Detection methods in measuring perceptual learning , 2018, Journal of vision.

[74]  Linda M. Zangwill,et al.  Comparison of Visual Field Severity Classification Systems for Glaucoma , 2012, Journal of glaucoma.

[75]  D. Gottlieb,et al.  The unidirectionality of cerebral polyopia. , 1992, Journal of clinical neuro-ophthalmology.

[76]  Michael Dorr,et al.  Using 10AFC to further improve the efficiency of the quick CSF method. , 2015, Journal of vision.

[77]  Chris A Johnson,et al.  Classification of visual field abnormalities in the ocular hypertension treatment study. , 2000, Archives of ophthalmology.

[78]  Tetsuro Oshika,et al.  Vision-related quality of life in patients with pituitary adenoma. , 2008, American journal of ophthalmology.

[79]  Douglas R. Anderson,et al.  Clinical Decisions In Glaucoma , 1993 .

[80]  H. Brash,et al.  Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking. , 2009, Ophthalmology.

[81]  M. Weitzman,et al.  Comparison between Tendency-Oriented Perimetry (TOP) and octopus threshold perimetry. , 2000, Ophthalmology (Rochester, Minn.).

[82]  B J Lachenmayr,et al.  The different effects of aging on normal sensitivity in flicker and light-sense perimetry. , 1994, Investigative ophthalmology & visual science.

[83]  William H Swanson,et al.  Estimation of spatial scale across the visual field using sinusoidal stimuli. , 2012, Investigative ophthalmology & visual science.

[84]  Rhea Lloyd,et al.  Food and Drug Administration approval process for ophthalmic drugs in the US , 2008, Current opinion in ophthalmology.

[85]  D. G. Green,et al.  Contrast sensitivity of the human peripheral retina. , 1969, Vision research.

[86]  Beatriz Munoz,et al.  Glaucoma and reading speed: the Salisbury Eye Evaluation project. , 2009, Archives of ophthalmology.

[87]  G E Trope,et al.  Evaluation of FASTPAC, a new strategy for threshold estimation with the Humphrey Field Analyzer, in a glaucomatous population. , 1993, Ophthalmology.

[88]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[89]  S. Yamamoto,et al.  Correlation of retinal sensitivity measured with fundus-related microperimetry to visual acuity and retinal thickness in eyes with diabetic macular edema , 2006, Eye.

[90]  Michael Dorr,et al.  Next-generation vision testing: the quick CSF , 2015 .

[91]  J Flammer,et al.  Quantification of glaucomatous visual field defects with automated perimetry. , 1985, Investigative ophthalmology & visual science.

[92]  Shirin E. Hassan,et al.  Visual Field Size Criteria for Mobility Rehabilitation Referral , 2010, Optometry and vision science : official publication of the American Academy of Optometry.

[93]  George Sperling,et al.  A Systems Analysis of Visual Motion Perception , 1999 .

[94]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[95]  D. Landers,et al.  Mediating Effects of Peripheral Vision in the Life Event Stress/Athletic Injury Relationship , 2005 .

[96]  C. Tyler,et al.  Bayesian adaptive estimation of psychometric slope and threshold , 1999, Vision Research.

[97]  Chris A. Johnson,et al.  Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation. , 2003, Investigative ophthalmology & visual science.

[98]  Tuomas J. Lukka,et al.  Bayesian adaptive estimation: The next dimension , 2006 .

[99]  R A Applegate,et al.  Corneal first surface optical aberrations and visual performance. , 2000, Journal of refractive surgery.

[100]  J Caprioli,et al.  Automated perimetry in glaucoma. , 1991, American journal of ophthalmology.

[101]  B. Dosher,et al.  Characterizing observers using external noise and observer models: assessing internal representations with external noise. , 2008, Psychological review.

[102]  H. Goldmann,et al.  Grundlagen exakter Perimetrie , 1945 .

[103]  A Heijl,et al.  Evaluation of a new perimetric threshold strategy, SITA, in patients with manifest and suspect glaucoma. , 1998, Acta ophthalmologica Scandinavica.

[104]  J J Corbett,et al.  The relationship between visual acuity, pupillary defect, and visual field loss. , 1982, American journal of ophthalmology.

[105]  D R May,et al.  Threshold Amsler grid testing in maculopathies. , 1987, Ophthalmology.

[106]  Douglas R. Anderson,et al.  Automatic Perimetry in Glaucoma: A Practical Guide , 1985 .

[107]  Richard B. Rosen,et al.  Combined Three-Dimensional Spectral OCT/SLO Topography and Microperimetry: Steps toward Achieving Functional Spectral OCT/SLO , 2009, Ophthalmic Research.

[108]  P. Wishart,et al.  Determining progressive visual field loss in serial Humphrey visual fields. , 1995, Ophthalmology.

[109]  Sumeet Dua,et al.  Computational Analysis of the Human Eye with Applications , 2011 .

[110]  I. Bailey,et al.  Visual Factors and Orientation‐Mobility Performance , 1982, American journal of optometry and physiological optics.

[111]  J. Smythies A Note on the Concept of the Visual Field in Neurology, Psychology, and Visual Neuroscience , 1996, Perception.

[112]  S. Drance,et al.  Light-sense, flicker and resolution perimetry in glaucoma: a comparative study , 2004, Graefe's Archive for Clinical and Experimental Ophthalmology.

[113]  Zhong-Lin Lu,et al.  Visual Psychophysics: From Laboratory to Theory , 2013 .

[114]  Paolo Brusini,et al.  Categorizing the stage of glaucoma from prediagnosis to end-stage disease. , 2006, American journal of ophthalmology.

[115]  Lene Martin,et al.  Rarebit and frequency-doubling technology perimetry in children and young adults. , 2005, Acta ophthalmologica Scandinavica.

[116]  Kazunori Miyata,et al.  Contrast sensitivity function and ocular higher-order wavefront aberrations in normal human eyes. , 2006, Ophthalmology.

[117]  Barbara Dosher,et al.  Category and Perceptual Learning in Subjects with Treated Wilson's Disease , 2010, PloS one.

[118]  S. McKee,et al.  Statistical properties of forced-choice psychometric functions: Implications of probit analysis , 1985, Perception & psychophysics.

[119]  J. Katz,et al.  Analysis of progressive change in automated visual fields in glaucoma. , 1996, Investigative ophthalmology & visual science.

[120]  Zhong-Lin Lu,et al.  Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. , 2010, Journal of vision.

[121]  Donald C Hood,et al.  The multifocal visual evoked potential. , 2003, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[122]  Chris A. Johnson Recent developments in automated perimetry in glaucoma diagnosis and management. , 2002, Current opinion in ophthalmology.

[123]  Wolfgang Fink,et al.  Novel 3D Computer-Automated Threshold Amsler Grid Visual Field Testing of Scotomas in Patients with Glaucoma , 2009, European journal of ophthalmology.

[124]  R. Rosenholtz,et al.  A summary statistic representation in peripheral vision explains visual search. , 2009, Journal of vision.

[125]  Anders Heijl,et al.  The Humphrey Field Analyzer, Construction and Concepts , 1985 .

[126]  J. D. Tompkins,et al.  Characteristics of frequency-of-seeing curves in normal subjects, patients with suspected glaucoma, and patients with glaucoma. , 1993, Investigative ophthalmology & visual science.

[127]  I. Rentschler,et al.  Peripheral vision and pattern recognition: a review. , 2011, Journal of vision.

[128]  Allison M McKendrick,et al.  Recent developments in perimetry: test stimuli and procedures , 2005, Clinical & experimental optometry.

[129]  R. Kardon,et al.  Automated pupil perimetry. Pupil field mapping in patients and normal subjects. , 1991, Ophthalmology.

[130]  Peter J. Bex,et al.  Assessing reading performance in the periphery with a Bayesian adaptive approach: The qReading method , 2019, Journal of vision.

[131]  P. King-Smith,et al.  Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation , 1994, Vision Research.

[132]  A. Sommer,et al.  Estimating progression of visual field loss in glaucoma. , 1997, Ophthalmology.

[133]  A Heijl,et al.  COMPUTER TEST LOGICS FOR AUTOMATIC PERIMETRY , 1977, Acta ophthalmologica.

[134]  A. Heijl,et al.  Visual fields correlate better than visual acuity to severity of diabetic retinopathy , 2005, Diabetologia.

[135]  H. Mallot,et al.  Assessment of vision-related quality of life in patients with homonymous visual field defects , 2007, Graefe's Archive for Clinical and Experimental Ophthalmology.

[136]  G L Portney Visual field testing. , 1976, The Western journal of medicine.

[137]  Tg Tanner,et al.  Generalized adaptive procedure for psychometric measurement , 2008 .

[138]  C. O'brien,et al.  Evaluation of the Humphrey FASTPAC threshold program in glaucoma. , 1994, The British journal of ophthalmology.

[139]  D M Green,et al.  Further studies of a maximum-likelihood yes-no procedure. , 1994, The Journal of the Acoustical Society of America.

[140]  A. Azuara-Blanco,et al.  Comparison of two fast strategies, SITA Fast and TOP, for the assessment of visual fields in glaucoma patients , 2002, Graefe's Archive for Clinical and Experimental Ophthalmology.

[141]  Wolfgang Fink,et al.  Three-dimensional computer-automated threshold Amsler grid test. , 2004, Journal of biomedical optics.

[142]  Douglas R. Anderson Automated Static Perimetry , 1992 .

[143]  Yue Wu,et al.  Forecasting future Humphrey Visual Fields using deep learning , 2018, bioRxiv.

[144]  Pengjing Xu,et al.  Identify mechanisms of amblyopia in Gabor orientation identification with external noise , 2006, Vision Research.

[145]  Mark A. Pitt,et al.  A Hierarchical Adaptive Approach to Optimal Experimental Design , 2014, Neural Computation.

[146]  Hans Bebie,et al.  Automated perimetry : visual field digest , 2004 .

[147]  Peter Wanger,et al.  New Perimetric Techniques: A Comparison between Rarebit and Frequency Doubling Technology Perimetry in Normal Subjects and Glaucoma Patients , 2004, Journal of glaucoma.

[148]  H. Rootzén,et al.  A new generation of algorithms for computerized threshold perimetry, SITA. , 2009, Acta ophthalmologica Scandinavica.

[149]  P. Ramulu Glaucoma and disability: which tasks are affected, and at what stage of disease? , 2009, Current opinion in ophthalmology.

[150]  J Katz,et al.  A longitudinal study of the age-adjusted variability of automated visual fields. , 1987, Archives of ophthalmology.

[151]  M. García-Pérez,et al.  Bayesian adaptive estimation of arbitrary points on a psychometric function. , 2007, The British journal of mathematical and statistical psychology.

[152]  M. L. Salvetat,et al.  Probing glaucoma visual damage by rarebit perimetry , 2005, British Journal of Ophthalmology.

[153]  Pengjing Xu,et al.  Spatial vision deficit underlies poor sine-wave motion direction discrimination in anisometropic amblyopia. , 2007, Journal of vision.

[154]  H. Goldmann,et al.  Ein selbstregistrierendes Projektionskugelperimeter , 1945 .

[155]  C. Johnson,et al.  Incidence of visual field loss in 20,000 eyes and its relationship to driving performance. , 1983, Archives of ophthalmology.

[156]  K W Clark,et al.  Color contrast perimetry. , 1984, Investigative ophthalmology & visual science.

[157]  M. Wall,et al.  Random dot motion perimetry in patients with glaucoma and in normal subjects. , 1995, American journal of ophthalmology.

[158]  Yuko Ohno,et al.  Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. , 2002, Investigative ophthalmology & visual science.

[159]  V. Dreyer,et al.  Visual acuity. , 1974, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[160]  A. James The pattern-pulse multifocal visual evoked potential. , 2003, Investigative ophthalmology & visual science.

[161]  Joel S Schuman,et al.  Diagnostic tools for glaucoma detection and management. , 2008, Survey of ophthalmology.

[162]  Sieu K. Khuu,et al.  A comparison of Goldmann III, V and spatially equated test stimuli in visual field testing: the importance of complete and partial spatial summation , 2017, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[163]  Susana T. L. Chung,et al.  Reading speed in the peripheral visual field of older adults: Does it benefit from perceptual learning? , 2010, Vision Research.

[164]  S. Klein,et al.  Measuring, estimating, and understanding the psychometric function: A commentary , 2001, Perception & psychophysics.

[165]  Marian Kaplun Shapiro,et al.  Visual field test , 2017 .

[166]  A HIGGITT,et al.  Reading Test in Glaucoma * , 1955, The British journal of ophthalmology.

[167]  Zhong-Lin Lu,et al.  Bayesian adaptive assessment of the reading function for vision: The qReading method , 2018, Journal of vision.

[168]  D. Broadway,et al.  Visual field testing for glaucoma – a practical guide , 2012, Community eye health.

[169]  F. Bremner,et al.  Pupil perimetry in the diagnosis of functional visual field loss. , 2002, Journal of the Royal Society of Medicine.