Custom-shaped metal nanostructures based on DNA origami silhouettes.

The DNA origami technique provides an intriguing possibility to develop customized nanostructures for various bionanotechnological purposes. One target is to create tailored bottom-up-based plasmonic devices and metamaterials based on DNA metallization or controlled attachment of nanoparticles to the DNA designs. In this article, we demonstrate an alternative approach: DNA origami nanoshapes can be utilized in creating accurate, uniform and entirely metallic (e.g. gold, silver and copper) nanostructures on silicon substrates. The technique is based on developing silhouettes of the origamis in the grown silicon dioxide layer, and subsequently using this layer as a mask for further patterning. The proposed method has a high spatial resolution, and the fabrication yields can approach 90%. The approach allows a cost-effective, parallel, large-scale patterning on a chip with fully tailored metallic nanostructures; the DNA origami shape and the applied metal can be specifically chosen for each conceivable implementation.

[1]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[2]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[3]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[4]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[5]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[6]  Tim Liedl,et al.  DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies , 2015, Nano letters.

[7]  Hendrik Dietz,et al.  Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami‐induced local destruction of silicon dioxide , 2015, Electrophoresis.

[8]  Shichao Zhao,et al.  Molecular lithography through DNA-mediated etching and masking of SiO2. , 2011, Journal of the American Chemical Society.

[9]  V. Linko,et al.  Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties , 2011, Nanotechnology.

[10]  Veikko Linko,et al.  A modular DNA origami-based enzyme cascade nanoreactor. , 2015, Chemical communications.

[12]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[13]  A. Paul Alivisatos,et al.  Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. , 2009, Journal of the American Chemical Society.

[14]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[15]  John Hickey,et al.  Metallization of branched DNA origami for nanoelectronic circuit fabrication. , 2011, ACS nano.

[16]  V. Linko,et al.  Self-Assembled DNA-Based Structures for Nanoelectronics , 2013 .

[17]  Hao Yan,et al.  Controlled delivery of DNA origami on patterned surfaces. , 2009, Small.

[18]  Hao Yan,et al.  Lattice-free prediction of three-dimensional structure of programmed DNA assemblies , 2014, Nature Communications.

[19]  Bernard Yurke,et al.  Dielectrophoretic trapping of DNA origami. , 2008, Small.

[20]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[21]  F. Simmel,et al.  Surface-assisted large-scale ordering of DNA origami tiles. , 2014, Angewandte Chemie.

[22]  Cees Dekker,et al.  Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. , 2014, ACS nano.

[23]  Ralf Seidel,et al.  Shape-controlled synthesis of gold nanostructures using DNA origami molds. , 2014, Nano letters.

[24]  Wei Sun,et al.  Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates. , 2013, Journal of the American Chemical Society.

[25]  Hao Yan,et al.  Structural DNA Nanotechnology: State of the Art and Future Perspective , 2014, Journal of the American Chemical Society.

[26]  Tim Liedl,et al.  DNA origami-templated growth of arbitrarily shaped metal nanoparticles. , 2011, Small.

[27]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[28]  F. Marty,et al.  Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro- and nanostructures , 2005, Microelectron. J..

[29]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[30]  Paul W K Rothemund,et al.  Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. , 2014, ACS nano.

[31]  C. Mirkin,et al.  Templated techniques for the synthesis and assembly of plasmonic nanostructures. , 2011, Chemical reviews.

[32]  Hao Yan,et al.  DNA Gridiron Nanostructures Based on Four-Arm Junctions , 2013, Science.

[33]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[34]  A. Kuzyk,et al.  Characterization of the conductance mechanisms of DNA origami by AC impedance spectroscopy. , 2009, Small.

[35]  Shichao Zhao,et al.  Mechanistic Study of the Nanoscale Negative-Tone Pattern Transfer from DNA Nanostructures to SiO2 , 2015 .

[36]  Antti-Pekka Eskelinen,et al.  Virus-encapsulated DNA origami nanostructures for cellular delivery. , 2014, Nano letters.

[37]  Luvena L. Ong,et al.  DNA Brick Crystals with Prescribed Depth , 2014, Nature chemistry.

[38]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[39]  Hao Yan,et al.  Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. , 2008, Journal of the American Chemical Society.

[40]  Zhong Jin,et al.  Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning , 2013, Nature Communications.

[41]  Antti-Pekka Eskelinen,et al.  Field-induced nanolithography for high-throughput pattern transfer. , 2009, Small.

[42]  Peng Yin,et al.  Casting inorganic structures with DNA molds , 2014, Science.

[43]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[44]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[45]  T. LaBean,et al.  Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. , 2011, Nano letters.

[46]  Paul W K Rothemund,et al.  Erratum: Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion , 2014, Nature Communications.

[47]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[48]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[49]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[50]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[51]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[52]  Nadrian C Seeman,et al.  Structural DNA nanotechnology: growing along with Nano Letters. , 2010, Nano letters.

[53]  Jie Chao,et al.  DNA-based plasmonic nanostructures , 2015 .

[54]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[55]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[56]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[57]  V. Linko,et al.  The enabled state of DNA nanotechnology. , 2013, Current opinion in biotechnology.

[58]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.