Simultaneous optimization of control parameters and configurations of PZT actuators for morphing structural shapes

This paper presents an investigation into simultaneous optimization of PZT-based actuators by simultaneously optimizing two sets of design variables, i.e., controlling and geometrical parameters for morphing plate structural shapes. The objective function is chosen as square of error between the actuated and desired shapes. In the optimization process, the controlling parameters are optimized using the linear least square method that is embedded into the optimization algorithm for geometric parameter design variables. The presented two-level algorithms are validated by illustrative examples. Numerical results show that simultaneous optimization of both controlling and geometrical parameters can lead to optimum actuator design that consumes less electrical energy and uses less smart materials.

[1]  M. J. Balas,et al.  Optimal quasi-static shape control for large aerospace antennae , 1985 .

[2]  Grant P. Steven,et al.  Piezoelectric actuator orientation optimization for static shape control of composite plates , 2002 .

[3]  Grant P. Steven,et al.  A Review on the Modelling of Piezoelectric Sensors and Actuators Incorporated in Intelligent Structures , 1998 .

[4]  Gregory N. Washington,et al.  Design and Construction of a Piezoelectric Point Actuated Active Aperture Antenna , 2002 .

[5]  Liyong Tong,et al.  Optimum control voltage design for constrained static shape control of piezoelectric structures , 2003 .

[6]  Douglas K. Lindner,et al.  Power Systems and Requirements for Integration of Smart Structures into Aircraft , 2004 .

[7]  L. Kollár,et al.  Shape Control of Composite Plates and Shells with Embedded Actuators. II. Desired Shape Specified , 1994 .

[8]  J. Wang,et al.  Design and demonstration of a high authority shape morphing structure , 2004 .

[9]  J. N. Kudva,et al.  Overview of the DARPA Smart Wing Project , 2004 .

[10]  Gangbing Song,et al.  Adaptive antenna shape control using piezoelectric actuators , 1997 .

[11]  Junjiro Onoda,et al.  Actuator Placement Optimization by Genetic and Improved Simulated Annealing Algorithms , 1993 .

[12]  Liyong Tong,et al.  Voltage and evolutionary piezoelectric actuator design optimisation for static shape control of smart plate structures , 2007 .

[13]  Victor Birman,et al.  ACTIVE CONTROL OF COMPOSITE PLATES USING PIEZOELECTRIC STIFFENERS , 1993 .

[14]  Abhijit Mukherjee,et al.  A gradientless technique for optimal distribution of piezoelectric material for structural control , 2003 .

[15]  Abhijit Mukherjee,et al.  Active vibration control of piezolaminated stiffened plates , 2002 .

[16]  Liyong Tong,et al.  High precision shape control of plates using orthotropic piezoelectric actuators , 2006 .

[17]  J. P. Fielding,et al.  Reliability, maintainability and development cost implications of variable camber wings , 1996 .

[18]  G. Redeker,et al.  Aerodynamic investigations toward an adaptive airfoil for a transonic transport aircraft , 1986 .

[19]  Kenneth B. Lazarus,et al.  Induced strain actuation of isotropic and anisotropic plates , 1991 .

[20]  A. Mukherjee,et al.  Design of actuator profiles for minimum power consumption , 2001 .

[21]  Manfred Hertwig,et al.  Shape Control of an Adaptive Mirror at Different Angles of Inclination , 1996 .

[22]  Sarp Adali,et al.  Optimization of composite plates with piezoelectric stiffener-actuators under in-plane compressive loads , 2005 .

[23]  Gareth J. Knowles,et al.  Static shape control for adaptive wings , 1994 .

[24]  Liyong Tong,et al.  Shape control of smart composite plate with non-rectangular piezoelectric actuators , 2004 .