Gaussian elimination: when is scaling beneficial?

Abstract For the linear system Ax = b , the ordered pair ( D, F ) of nonsingular diagonal matrices determine a scaling of the system through the two equations D ( AF ) y = Db , y = F −1 x . When scaling is implemented along with partial pivoting (PP) to solve Ax = b by Gaussian elimination (GE), it is well known that certain ordered pairs ( D, F ) produce better computed solutions than those obtained in the absence of scaling, while others produce worse solutions. The two most common explanations of this fact are (1) ( D, F ) modifies (magnifies or reduces) the classical condition number of A , and (2) ( D, F ) modifies the magnitudes of the elements of A . In case (2), if a scaling yields entries of approximately the same magnitude, it is called an equilibration. Here, the underlying hyperplane geometry of both the sweepout phase and the back-substitution phase of GE is used to achieve a new level of understanding. We present what we believe to be a better explanation of how scaling or equilibration influences PP in the selection of pivot equations, a process critical to both phases of GE.

[1]  W. Hager Applied Numerical Linear Algebra , 1987 .

[2]  Robert D. Skeel,et al.  Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.

[3]  L. Trefethen,et al.  Average-case stability of Gaussian elimination , 1990 .

[4]  F. L. Bauer Optimally scaled matrices , 1963 .

[5]  G. Poole,et al.  A geometric analysis of Gaussian elimination. II , 1991 .

[6]  James Hardy Wilkinson,et al.  Error Analysis of Direct Methods of Matrix Inversion , 1961, JACM.

[7]  J. H. Wilkinson Modern Error Analysis , 1971 .

[8]  Robert D. Skeel,et al.  EFFECT OF EQUILIBRATION ON RESIDUAL SIZE FOR PARTIAL PIVOTING , 1981 .

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[11]  John R. Rice Matrix Computations and Mathematical Software , 1983 .

[12]  G. Forsythe,et al.  Computer solution of linear algebraic systems , 1969 .

[13]  Cleve B. Moler,et al.  Matrix computations with Fortran and paging , 1972, CACM.

[14]  G. Stewart Introduction to matrix computations , 1973 .

[15]  Richard W. Hamming,et al.  Introduction to Applied Numerical Analysis. , 1971 .

[16]  A. Sluis Condition numbers and equilibration of matrices , 1969 .

[17]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[18]  Jack Dongarra,et al.  LINPACK Users' Guide , 1987 .

[19]  Nicholas J. Higham,et al.  The accuracy of solutions to triangular systems , 1989 .

[20]  L. Trefethen Three mysteries of Gaussian elimination , 1985, SGNM.

[21]  R. Skeel Iterative refinement implies numerical stability for Gaussian elimination , 1980 .

[22]  A. Sluis Condition, equilibration and pivoting in linear algebraic systems , 1970 .

[23]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[24]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[25]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[26]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .