Precomputing strategy for Hamiltonian Monte Carlo method based on regularity in parameter space
暂无分享,去创建一个
[1] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[2] Babak Shahbaba,et al. Split Hamiltonian Monte Carlo , 2011, Stat. Comput..
[3] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[4] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[5] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[6] Anna Walsh. STUDIES IN MOLECULAR DYNAMICS , 1965 .
[7] Max Welling,et al. Distributed and Adaptive Darting Monte Carlo through Regenerations , 2013, AISTATS.
[8] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[9] Aaron Smith,et al. Asymptotically Exact MCMC Algorithms via Local Approximations of Computationally Intensive Models , 2014 .
[10] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[11] D. W. Noid. Studies in Molecular Dynamics , 1976 .
[12] Babak Shahbaba,et al. Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.
[13] Barbara I. Wohlmuth,et al. Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.
[14] Francis R. Bach,et al. Online Learning for Latent Dirichlet Allocation , 2010, NIPS.
[15] Geoffrey E. Hinton,et al. Evaluation of Gaussian processes and other methods for non-linear regression , 1997 .
[16] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[17] Liam Paninski,et al. Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains , 2011, Neural Computation.
[18] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[19] Tianqi Chen,et al. Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.
[20] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[21] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[22] Babak Shahbaba,et al. Distributed Stochastic Gradient MCMC , 2014, ICML.
[23] B. Alder,et al. Studies in Molecular Dynamics. I. General Method , 1959 .
[24] A. P. Dawid,et al. Regression and Classification Using Gaussian Process Priors , 2009 .
[25] Mátyás A. Sustik,et al. Sparse Approximate Manifolds for Differential Geometric MCMC , 2012, NIPS.
[26] A. P. Dawid,et al. Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .
[27] W. Gilks. Markov Chain Monte Carlo , 2005 .
[28] Patrick R. Conrad,et al. Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations , 2014, 1402.1694.
[29] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[30] Jeffrey S. Rosenthal,et al. Optimal Proposal Distributions and Adaptive MCMC , 2011 .
[31] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.