Precomputing strategy for Hamiltonian Monte Carlo method based on regularity in parameter space

Markov Chain Monte Carlo (MCMC) algorithms play an important role in statistical inference problems dealing with intractable probability distributions. Recently, many MCMC algorithms such as Hamiltonian Monte Carlo (HMC) and Riemannian Manifold HMC have been proposed to provide distant proposals with high acceptance rate. These algorithms, however, tend to be computationally intensive which could limit their usefulness, especially for big data problems due to repetitive evaluations of functions and statistical quantities that depend on the data. This issue occurs in many statistic computing problems. In this paper, we propose a novel strategy that exploits smoothness (regularity) in parameter space to improve computational efficiency of MCMC algorithms. When evaluation of functions or statistical quantities are needed at a point in parameter space, interpolation from precomputed values or previous computed values is used. More specifically, we focus on HMC algorithms that use geometric information for faster exploration of probability distributions. Our proposed method is based on precomputing the required geometric information on a set of grids before running sampling algorithm and approximating the geometric information for the current location of the sampler using the precomputed information at nearby grids at each iteration of HMC. Sparse grid interpolation method is used for high dimensional problems. Tests on computational examples are shown to illustrate the advantages of our method.

[1]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[2]  Babak Shahbaba,et al.  Split Hamiltonian Monte Carlo , 2011, Stat. Comput..

[3]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[4]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[5]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..

[6]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[7]  Max Welling,et al.  Distributed and Adaptive Darting Monte Carlo through Regenerations , 2013, AISTATS.

[8]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[9]  Aaron Smith,et al.  Asymptotically Exact MCMC Algorithms via Local Approximations of Computationally Intensive Models , 2014 .

[10]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[11]  D. W. Noid Studies in Molecular Dynamics , 1976 .

[12]  Babak Shahbaba,et al.  Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.

[13]  Barbara I. Wohlmuth,et al.  Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.

[14]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[15]  Geoffrey E. Hinton,et al.  Evaluation of Gaussian processes and other methods for non-linear regression , 1997 .

[16]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[17]  Liam Paninski,et al.  Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains , 2011, Neural Computation.

[18]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[19]  Tianqi Chen,et al.  Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.

[20]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[21]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[22]  Babak Shahbaba,et al.  Distributed Stochastic Gradient MCMC , 2014, ICML.

[23]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[24]  A. P. Dawid,et al.  Regression and Classification Using Gaussian Process Priors , 2009 .

[25]  Mátyás A. Sustik,et al.  Sparse Approximate Manifolds for Differential Geometric MCMC , 2012, NIPS.

[26]  A. P. Dawid,et al.  Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .

[27]  W. Gilks Markov Chain Monte Carlo , 2005 .

[28]  Patrick R. Conrad,et al.  Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations , 2014, 1402.1694.

[29]  J. M. Sanz-Serna,et al.  Hybrid Monte Carlo on Hilbert spaces , 2011 .

[30]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[31]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.