Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells.

[1]  C. Croce,et al.  Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. , 2010, Carcinogenesis.

[2]  G. Calin,et al.  MicroRNAs, ultraconserved genes and colorectal cancers. , 2010, The international journal of biochemistry & cell biology.

[3]  Hai Hu,et al.  Tumor-suppressive mir-663 gene induces mitotic catastrophe growth arrest in human gastric cancer cells. , 2010, Oncology reports.

[4]  Lai Wei,et al.  Regulation of microRNA expression and abundance during lymphopoiesis. , 2010, Immunity.

[5]  F. Ferrari,et al.  A MicroRNA Targeting Dicer for Metastasis Control , 2010, Cell.

[6]  E. Buratti,et al.  Nuclear factor TDP‐43 can affect selected microRNA levels , 2010, The FEBS journal.

[7]  C. Croce,et al.  miR-15a and miR-16-1 in cancer: discovery, function and future perspectives , 2010, Cell Death and Differentiation.

[8]  S. D. Selcuklu,et al.  miR-21 as a key regulator of oncogenic processes. , 2009, Biochemical Society transactions.

[9]  Toshihito Seki,et al.  Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. , 2009, Cancer research.

[10]  A. Tenesa,et al.  New insights into the aetiology of colorectal cancer from genome-wide association studies , 2009, Nature Reviews Genetics.

[11]  A. Bishayee Cancer Prevention and Treatment with Resveratrol: From Rodent Studies to Clinical Trials , 2009, Cancer Prevention Research.

[12]  George A. Calin,et al.  MicroRNAs — the micro steering wheel of tumour metastases , 2009, Nature Reviews Cancer.

[13]  Ziying Liu,et al.  Regulation of TGF-β signaling by Smad7 , 2009, Acta biochimica et biophysica Sinica.

[14]  Maozhen Tian,et al.  The TGF-beta paradox in human cancer: an update. , 2009, Future oncology.

[15]  D. Berger,et al.  MicroRNA and Colorectal Cancer , 2009, World Journal of Surgery.

[16]  Anna M. Krichevsky,et al.  miR-21: a small multi-faceted RNA , 2008, Journal of cellular and molecular medicine.

[17]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[18]  P. Allavena,et al.  Cancer-related inflammation , 2008, Nature.

[19]  M. Langenskiöld,et al.  Increased TGF‐Beta1 protein expression in patients with advanced colorectal cancer , 2008, Journal of surgical oncology.

[20]  C. Creighton,et al.  Widespread deregulation of microRNA expression in human prostate cancer , 2008, Oncogene.

[21]  Donald C. Chang,et al.  Loss of mir-146a function in hormone-refractory prostate cancer. , 2008, RNA.

[22]  R. Vyzula,et al.  Altered Expression of miR-21, miR-31, miR-143 and miR-145 Is Related to Clinicopathologic Features of Colorectal Cancer , 2008, Oncology.

[23]  C. Harris,et al.  Inflammation and cancer: An ancient link with novel potentials , 2007, International journal of cancer.

[24]  L. Kopelovich,et al.  Resveratrol: a review of preclinical studies for human cancer prevention. , 2007, Toxicology and applied pharmacology.

[25]  H. Allgayer,et al.  Loss of programmed cell death 4 expression marks adenoma‐carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer , 2007, Cancer.

[26]  G. Calin,et al.  miRNAs and their potential for use against cancer and other diseases. , 2007, Future oncology.

[27]  S. Oh,et al.  Sonic hedgehog signaling promotes motility and invasiveness of gastric cancer cells through TGF-beta-mediated activation of the ALK5-Smad 3 pathway. , 2007, Carcinogenesis.

[28]  S. Shankar,et al.  Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. , 2007, Frontiers in bioscience : a journal and virtual library.

[29]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[30]  Z. Ungvari,et al.  Resveratrol attenuates TNFalfa‐induced activation of coronary arterial endothelial cells: role of NF‐kB inhibition , 2007 .

[31]  C. Croce,et al.  MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.

[32]  Z. Ungvari,et al.  Resveratrol attenuates TNF-α-induced activation of coronary arterial endothelial cells: role of NF-κB inhibition , 2006 .

[33]  S. Wahl,et al.  TGF‐β: a mobile purveyor of immune privilege , 2006 .

[34]  A. Jemal,et al.  Cancer Statistics, 2006 , 2006, CA: a cancer journal for clinicians.

[35]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[37]  Gerard C Blobe,et al.  Role of transforming growth factor Beta in human cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[38]  E. Solary,et al.  Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells , 2004, Oncogene.

[39]  R. Akhurst TGFβ signaling in health and disease , 2004, Nature Genetics.

[40]  Iver Petersen,et al.  Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis , 2003, The Journal of pathology.

[41]  Hans Clevers,et al.  Caught up in a Wnt storm: Wnt signaling in cancer. , 2003, Biochimica et biophysica acta.

[42]  J. Kaprio,et al.  Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. , 2000, The New England journal of medicine.

[43]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[44]  Jinsong You,et al.  The distribution of calmodulin and Ca2+-activated calmodulin in cell cycle of mouse erythroleukemia cells , 1990, Cell Research.

[45]  A. Leibovitz,et al.  Classification of human colorectal adenocarcinoma cell lines. , 1976, Cancer research.

[46]  A. Schetter,et al.  Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. , 2010, Carcinogenesis.

[47]  P. Cheah Recent advances in colorectal cancer genetics and diagnostics. , 2009, Critical reviews in oncology/hematology.

[48]  A. Hata,et al.  SMAD proteins control DROSHA-mediated microRNA maturation , 2008, Nature.

[49]  S. Wahl,et al.  TGF-beta: a mobile purveyor of immune privilege. , 2006, Immunological reviews.

[50]  A. Lindblom,et al.  Family history of colorectal cancer in a Sweden county , 2004, Familial Cancer.

[51]  R. Akhurst TGF beta signaling in health and disease. , 2004, Nature genetics.

[52]  J. Massagué,et al.  TGFbeta signaling in growth control, cancer, and heritable disorders. , 2000, Cell.