Finite-Sample Properties of Propensity-Score Matching and Weighting Estimators

The finite-sample properties of matching and weighting estimators, often used for estimating average treatment effects, are analyzed. Potential and feasible precision gains relative to pair matching are examined. Local linear matching (with and without trimming), k-nearest-neighbor matching, and particularly the weighting estimators performed worst. Ridge matching, on the other hand, leads to an approximately 25% smaller MSE than does pair matching. In addition, ridge matching is least sensitive to the design choice. © 2004 President and Fellows of Harvard College and the Massachusetts Institute of Technology.

[1]  M. Frölich Non-Parametric Regression for Binary Dependent Variables , 2006 .

[2]  M. Frölich Semiparametric estimation of conditional mean functions with missing data , 2006 .

[3]  Magdalena Rodríguez,et al.  The latin model of welfare: do "insertion contracts" reduce long-term dependence? , 2006 .

[4]  A. Bergemann,et al.  Evaluating the Dynamic Employment Effects of Training Programs in East Germany Using Conditional Difference-in-Differences , 2005, SSRN Electronic Journal.

[5]  R. Blundell,et al.  Evaluating the effect of education on earnings: models, methods and results from the National Child Development Survey , 2005 .

[6]  Stephan L. Thomsen,et al.  The Employment Effects of Job Creation Schemes in Germany: A Microeconometric Evaluation , 2005, SSRN Electronic Journal.

[7]  O. Linton,et al.  Identification and Inference for Econometric Models: Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators , 2005 .

[8]  Steven F. Lehrer,et al.  Matching using semiparametric propensity scores , 2013 .

[9]  M. Rosholm,et al.  Is Labour Market Training a Curse for the Unemployed? Evidence from a Social Experiment , 2003, SSRN Electronic Journal.

[10]  G. Imbens,et al.  Bias-Corrected Matching Estimators for Average Treatment Effects , 2011 .

[11]  O. Linton,et al.  Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators , 2001 .

[12]  Jeffrey A. Smith,et al.  Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators? , 2000 .

[13]  Theo Gasser,et al.  Data Adaptive Ridging in Local Polynomial Regression , 2000 .

[14]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2000 .

[15]  G. Imbens The Role of the Propensity Score in Estimating Dose-Response Functions , 1999 .

[16]  Petra E. Todd,et al.  Matching As An Econometric Evaluation Estimator , 1998 .

[17]  J. Hahn On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects , 1998 .

[18]  Petra E. Todd,et al.  Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme , 1997 .

[19]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[20]  Jianqing Fan,et al.  Local Polynomial Regression: Optimal Kernels and Asymptotic Minimax Efficiency , 1997 .

[21]  Theo Gasser,et al.  Finite-Sample Variance of Local Polynomials: Analysis and Solutions , 1996 .

[22]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[23]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[24]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[25]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[26]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[27]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.