Targeted Next Generation Sequencing in patients with Myotonia Congenita.

[1]  G. Novelli,et al.  Genotype–phenotype correlation of F484L mutation in three Italian families with Thomsen myotonia , 2017, Muscle & nerve.

[2]  Gert Matthijs,et al.  Guidelines for diagnostic next-generation sequencing , 2016, European Journal of Human Genetics.

[3]  Sara Chandros Hull,et al.  Erratum: Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine (American Journal of Human Genetics (2016) 98(6) (1067–1076) (S0002929716301069) (10.1016/j.ajhg.2016.04.011)) , 2016 .

[4]  G. Siciliano,et al.  Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  Nikhil Wagle,et al.  Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine. , 2016, American journal of human genetics.

[6]  Raymond Dalgleish,et al.  HGVS Recommendations for the Description of Sequence Variants: 2016 Update , 2016, Human mutation.

[7]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[8]  Kamal Kishore,et al.  Integrated Systems for NGS Data Management and Analysis: Open Issues and Available Solutions , 2016, Front. Genet..

[9]  F. Alkuraya Discovery of mutations for Mendelian disorders , 2016, Human Genetics.

[10]  M. Hanna,et al.  Long-term Safety and Efficacy of Mexiletine for Patients With Skeletal Muscle Channelopathies. , 2015, JAMA neurology.

[11]  Gert Matthijs,et al.  Guidelines for diagnostic next-generation sequencing , 2015, European Journal of Human Genetics.

[12]  Yongwook Choi,et al.  PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels , 2015, Bioinform..

[13]  T. Andrews,et al.  Comparison of predicted and actual consequences of missense mutations , 2015, Proceedings of the National Academy of Sciences.

[14]  R. Mantegazza,et al.  ClC-1 chloride channels: state-of-the-art research and future challenges , 2015, Front. Cell. Neurosci..

[15]  Bale,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[16]  Fabian Sievers,et al.  Clustal Omega , 2014, Current protocols in bioinformatics.

[17]  Mark N. Wass,et al.  VarMod: modelling the functional effects of non-synonymous variants , 2014, Nucleic Acids Res..

[18]  S. Cannon,et al.  Nondystrophic myotonia: Challenges and future directions , 2014, Experimental Neurology.

[19]  Thomas Schlitt,et al.  Predicting the functional consequences of non-synonymous DNA sequence variants--evaluation of bioinformatics tools and development of a consensus strategy. , 2013, Genomics.

[20]  C. Tyler-Smith,et al.  Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease , 2013, Human Genetics.

[21]  Nicholas Katsanis,et al.  Molecular genetic testing and the future of clinical genomics , 2013, Nature Reviews Genetics.

[22]  I. Adzhubei,et al.  Predicting Functional Effect of Human Missense Mutations Using PolyPhen‐2 , 2013, Current protocols in human genetics.

[23]  Barry Merriman,et al.  Progress in Ion Torrent semiconductor chip based sequencing , 2012, Electrophoresis.

[24]  H. Mefford Diagnostic exome sequencing--are we there yet? , 2012, The New England journal of medicine.

[25]  F. Lehmann-Horn,et al.  Disease‐causing mutations C277R and C277Y modify gating of human ClC‐1 chloride channels in myotonia congenita , 2012, The Journal of physiology.

[26]  S. Schorge,et al.  A new explanation for recessive myotonia congenita , 2012, Neurology.

[27]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[28]  Jeroen F. J. Laros,et al.  LOVD v.2.0: the next generation in gene variant databases , 2011, Human mutation.

[29]  Jana Marie Schwarz,et al.  MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.

[30]  M. Lyons,et al.  Novel CLCN1 mutation in carbamazepine-responsive myotonia congenita. , 2010, Pediatric neurology.

[31]  Nilesh J Samani,et al.  The personal genome—the future of personalised medicine? , 2010, The Lancet.

[32]  E. Colding-Jørgensen Phenotypic variability in myotonia congenita , 2005, Muscle & nerve.

[33]  B. P. Hughes,et al.  Characterization of three myotonia‐associated mutations of the CLCN1 chloride channel gene via heterologous expression , 2004, Human mutation.

[34]  J. Riordan,et al.  The PDZ-binding Chloride Channel ClC-3B Localizes to the Golgi and Associates with Cystic Fibrosis Transmembrane Conductance Regulator-interacting PDZ Proteins* , 2003, The Journal of Biological Chemistry.

[35]  T. Jentsch,et al.  Ion channel diseases. , 2002, Human molecular genetics.

[36]  G. Holmgren,et al.  Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia , 2001, European Journal of Human Genetics.

[37]  A. Accardi,et al.  Fast and Slow Gating Relaxations in the Muscle Chloride Channel Clc-1 , 2000, The Journal of general physiology.

[38]  J. Mindell,et al.  A decade of CLC chloride channels: structure, mechanism, and many unsettled questions. , 2000, Annual review of biophysics and biomolecular structure.

[39]  T. Friedrich,et al.  CLC Chloride Channels in Caenorhabditis elegans * , 1999, The Journal of Biological Chemistry.

[40]  S. Cannon,et al.  Ion-channel defects and aberrant excitability in myotonia and periodic paralysis , 1996, Trends in Neurosciences.

[41]  M. Koch,et al.  Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. , 1995, American journal of human genetics.

[42]  M. Brooke,et al.  Muscle pathology of myotonia congenita , 1976, Journal of the Neurological Sciences.

[43]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[44]  B. Dallapiccola,et al.  Identification of five new mutations and three novel polymorphisms in the muscle chloride channel gene (CLCN1) in 20 Italian patients with dominant and recessive myotonia congenita , 1998, Human mutation.

[45]  Michael Krawczak,et al.  The human gene mutation database , 1998, Nucleic Acids Res..