Induction of robust classifiers for web ontologies through kernel machines

The paper focuses on the task of approximate classification of semantically annotated individual resources in ontological knowledge bases. The method is based on classification models built through kernel methods, a well-known class of effective statistical learning algorithms. Kernel functions encode a notion of similarity among elements of some input space. The definition of a family of parametric language-independent kernel functions for individuals occurring in an ontology allows the application of these statistical learning methods on Semantic Web knowledge bases. The classification models induced by kernel methods offer an alternative way to classify individuals with respect to the typical exact and approximate deductive reasoning procedures. The proposed statistical setting enables further inductive approaches to a variety of other tasks that can better cope with the inherent incompleteness of the knowledge bases in the Semantic Web and with their potential incoherence due to their distributed nature. The effectiveness of the proposed method is empirically proved through experiments on the task of approximate classification with real ontologies collected from standard repositories.

[1]  Nicola Fanizzi,et al.  A Declarative Kernel for ALC Concept Descriptions , 2006, ISMIS.

[2]  Frank van Harmelen,et al.  A Framework for Handling Inconsistency in Changing Ontologies , 2005, SEMWEB.

[3]  Philipp Cimiano,et al.  Ontology Learning from Text: Methods, Evaluation and Applications , 2005 .

[4]  Stephan Bloehdorn,et al.  Kernel Methods for Mining Instance Data in Ontologies , 2007, ISWC/ASWC.

[5]  Nicola Fanizzi,et al.  Learning with Kernels in Description Logics , 2008, ILP.

[6]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[7]  Jens Lehmann,et al.  Concept learning in description logics using refinement operators , 2009, Machine Learning.

[8]  Bijan Parsia,et al.  Repairing Unsatisfiable Concepts in OWL Ontologies , 2006, ESWC.

[9]  Nicola Fanizzi,et al.  Randomized metric induction and evolutionary conceptual clustering for semantic knowledge bases , 2007, CIKM '07.

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.

[12]  Nicola Fanizzi,et al.  Query Answering and Ontology Population: An Inductive Approach , 2008, ESWC.

[13]  Hans C. van Houwelingen,et al.  The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani and Jerome Friedman, Springer, New York, 2001. No. of pages: xvi+533. ISBN 0‐387‐95284‐5 , 2004 .

[14]  Pascal Hitzler,et al.  Perspectives of Neural-Symbolic Integration , 2007, Studies in Computational Intelligence.

[15]  Nicola Fanizzi,et al.  Evolutionary Conceptual Clustering Based on Induced Pseudo-Metrics , 2008, Int. J. Semantic Web Inf. Syst..

[16]  Luc De Raedt,et al.  Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting , 2006, J. Mach. Learn. Res..

[17]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[18]  Nicola Fanizzi,et al.  Inductive Classification of Semantically Annotated Resources through Reduced Coulomb Energy Networks , 2009, Int. J. Semantic Web Inf. Syst..

[19]  Dan Roth,et al.  On Kernel Methods for Relational Learning , 2003, ICML.

[20]  Pavel Zezula,et al.  Similarity Search: The Metric Space Approach (Advances in Database Systems) , 2005 .

[21]  Nicola Fanizzi,et al.  Approximate Measures of Semantic Dissimilarity under Uncertainty , 2007, URSW.

[22]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[23]  Thomas Eiter,et al.  Realizing Default Logic over Description Logic Knowledge Bases , 2009, ECSQARU.

[24]  Marc Ehrig,et al.  Similarity for Ontologies - A Comprehensive Framework , 2005, ECIS.

[25]  Andrew McCallum,et al.  Introduction to Statistical Relational Learning , 2007 .

[26]  Pascal Hitzler,et al.  Resolution-Based Approximate Reasoning for OWL DL , 2005, SEMWEB.

[27]  Luigi Iannone,et al.  An Algorithm Based on Counterfactuals for Concept Learning in the Semantic Web , 2005, IEA/AIE.

[28]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[29]  Thomas Gärtner,et al.  Kernels and Distances for Structured Data , 2004, Machine Learning.

[30]  Matthew Richardson,et al.  Just Add Weights: Markov Logic for the Semantic Web , 2008, URSW.

[31]  Ben Taskar,et al.  Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning) , 2007 .

[32]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[33]  L. Stein,et al.  OWL Web Ontology Language - Reference , 2004 .

[34]  Frank van Harmelen,et al.  Using Semantic Distances for Reasoning with Inconsistent Ontologies , 2008, International Semantic Web Conference.

[35]  Nicola Fanizzi,et al.  Statistical Learning for Inductive Query Answering on OWL Ontologies , 2008, SEMWEB.

[36]  Pavel Zezula,et al.  Similarity Search - The Metric Space Approach , 2005, Advances in Database Systems.

[37]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[38]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[39]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[40]  Stephen Muggleton,et al.  Support Vector Inductive Logic Programming , 2005, Discovery Science.