Designs from subcode supports of linear codes

We present new constructions of t-designs by considering subcode supports of linear codes over finite fields. In particular, we prove an Assmus-Mattson type theorem for such subcodes, as well as an automorphism characterization. We derive new t-designs (t  ≤  5) from our constructions.

[1]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[2]  Keisuke Shiromoto A new MacWillams type identity for linear codes , 1996 .

[3]  Michael A. Tsfasman,et al.  Geometric approach to higher weights , 1995, IEEE Trans. Inf. Theory.

[4]  Keisuke Shiromoto,et al.  The Higher Weight Enumerators of the Doubly-Even, Self-Dual $[48, 24, 12]$ Code , 2007, IEEE Transactions on Information Theory.

[5]  Jon-Lark Kim,et al.  Designs in Additive Codes over GF(4) , 2003, Des. Codes Cryptogr..

[6]  Helmut Koch On self-dual, doubly even codes of length 32 , 1989, J. Comb. Theory, Ser. A.

[7]  Keisuke Shiromoto The Weight Enumerator of Linear Codes over GF qm) Having Generator Matrix over GF q , 1999, Des. Codes Cryptogr..

[8]  Spyros S. Magliveras,et al.  t-Designs from the large Mathieu groups , 1981 .

[9]  I. G. Núñez,et al.  Generalized Hamming Weights for Linear Codes , 2001 .

[10]  N. J. A. Sloane,et al.  On ternary self-dual codes of length 24 , 1981, IEEE Trans. Inf. Theory.

[11]  Olgica Milenkovic,et al.  The third support weight enumerators of the doubly-even, self-dual [32, 16, 8] codes , 2003, IEEE Trans. Inf. Theory.

[12]  C. Colbourn,et al.  Handbook of Combinatorial Designs , 2006 .

[13]  N. J. A. Sloane,et al.  A strengthening of the Assmus-Mattson theorem , 1991, IEEE Trans. Inf. Theory.

[14]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[15]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .

[16]  Thomas A. Dowling,et al.  Codes, packings and the critical problem , 1971 .

[17]  Torleiv Kløve The weight distribution of linear codes over GF(ql) having generator matrix over GF(q>) , 1978, Discret. Math..

[18]  H. Mattson,et al.  New 5-designs , 1969 .

[19]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[20]  Sheridan K. Houghten,et al.  The extended quadratic residue code is the only (48, 24, 12) self-dual doubly-even code , 2003, IEEE Trans. Inf. Theory.