Designs from subcode supports of linear codes
暂无分享,去创建一个
[1] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[2] Keisuke Shiromoto. A new MacWillams type identity for linear codes , 1996 .
[3] Michael A. Tsfasman,et al. Geometric approach to higher weights , 1995, IEEE Trans. Inf. Theory.
[4] Keisuke Shiromoto,et al. The Higher Weight Enumerators of the Doubly-Even, Self-Dual $[48, 24, 12]$ Code , 2007, IEEE Transactions on Information Theory.
[5] Jon-Lark Kim,et al. Designs in Additive Codes over GF(4) , 2003, Des. Codes Cryptogr..
[6] Helmut Koch. On self-dual, doubly even codes of length 32 , 1989, J. Comb. Theory, Ser. A.
[7] Keisuke Shiromoto. The Weight Enumerator of Linear Codes over GF qm) Having Generator Matrix over GF q , 1999, Des. Codes Cryptogr..
[8] Spyros S. Magliveras,et al. t-Designs from the large Mathieu groups , 1981 .
[9] I. G. Núñez,et al. Generalized Hamming Weights for Linear Codes , 2001 .
[10] N. J. A. Sloane,et al. On ternary self-dual codes of length 24 , 1981, IEEE Trans. Inf. Theory.
[11] Olgica Milenkovic,et al. The third support weight enumerators of the doubly-even, self-dual [32, 16, 8] codes , 2003, IEEE Trans. Inf. Theory.
[12] C. Colbourn,et al. Handbook of Combinatorial Designs , 2006 .
[13] N. J. A. Sloane,et al. A strengthening of the Assmus-Mattson theorem , 1991, IEEE Trans. Inf. Theory.
[14] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[15] Neil J. A. Sloane,et al. The theory of error-correcting codes (north-holland , 1977 .
[16] Thomas A. Dowling,et al. Codes, packings and the critical problem , 1971 .
[17] Torleiv Kløve. The weight distribution of linear codes over GF(ql) having generator matrix over GF(q>) , 1978, Discret. Math..
[18] H. Mattson,et al. New 5-designs , 1969 .
[19] W. Cary Huffman,et al. Fundamentals of Error-Correcting Codes , 1975 .
[20] Sheridan K. Houghten,et al. The extended quadratic residue code is the only (48, 24, 12) self-dual doubly-even code , 2003, IEEE Trans. Inf. Theory.