A generalized theory of preferential linking

There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals’ behaviors and the global organization of social networks.

[1]  Vittorio Loreto,et al.  Semiotic dynamics and collaborative tagging , 2006, Proceedings of the National Academy of Sciences.

[2]  Reza Rejaie,et al.  Google+ or Google-?: dissecting the evolution of the new OSN in its first year , 2013, WWW '13.

[3]  Z. Neda,et al.  Measuring preferential attachment in evolving networks , 2001, cond-mat/0104131.

[4]  Tao Zhou,et al.  Scale-free networks without growth , 2008 .

[5]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[6]  Martin G. Everett,et al.  A Graph-theoretic perspective on centrality , 2006, Soc. Networks.

[7]  Ulrik Brandes,et al.  Social Networks , 2013, Handbook of Graph Drawing and Visualization.

[8]  Albert-László Barabási,et al.  Uncovering the role of elementary processes in network evolution , 2013, Scientific Reports.

[9]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[10]  Mila Kingsbury,et al.  Friendship: An old concept with a new meaning? , 2013, Comput. Hum. Behav..

[11]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[12]  Xuan Liu,et al.  A generalized theory of preferential linking , 2013, 1301.0189.

[13]  Krishna P. Gummadi,et al.  Measurement and analysis of online social networks , 2007, IMC '07.

[14]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[15]  Seungyeop Han,et al.  Analysis of topological characteristics of huge online social networking services , 2007, WWW '07.

[16]  Krishna P. Gummadi,et al.  Growth of the flickr social network , 2008, WOSN '08.

[17]  Haibo Hu,et al.  Disassortative mixing in online social networks , 2009, 0909.0450.

[18]  A. Stirling A general framework for analysing diversity in science, technology and society , 2007, Journal of The Royal Society Interface.

[19]  Rossano Schifanella,et al.  Friendship prediction and homophily in social media , 2012, TWEB.

[20]  Cliff Lampe,et al.  The Benefits of Facebook "Friends: " Social Capital and College Students' Use of Online Social Network Sites , 2007, J. Comput. Mediat. Commun..

[21]  Ling Huang,et al.  Evolution of social-attribute networks: measurements, modeling, and implications using google+ , 2012, Internet Measurement Conference.

[22]  Xiaofan Wang,et al.  Unified index to quantifying heterogeneity of complex networks , 2008 .

[23]  T S Evans,et al.  Exact solution for the time evolution of network rewiring models. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Danah Boyd,et al.  Social Network Sites: Definition, History, and Scholarship , 2007, J. Comput. Mediat. Commun..

[25]  Kerk F. Kee,et al.  Is There Social Capital in a Social Network Site?: Facebook Use and College Students’ Life Satisfaction, Trust, and Participation 1 , 2009 .

[26]  Jan Skopek,et al.  Who Contacts Whom? Educational Homophily in Online Mate Selection , 2011 .

[27]  Sonja Utz,et al.  Show me your friends and I will tell you what type of person you are: How one's profile, number of friends, and type of friends influence impression formation on social network sites , 2010, J. Comput. Mediat. Commun..

[28]  Adrian E. Raftery,et al.  Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models , 2009, Soc. Networks.

[29]  Sara B. Soderstrom,et al.  Dynamics of Dyads in Social Networks: Assortative, Relational, and Proximity Mechanisms , 2010 .

[30]  Ben Y. Zhao,et al.  Beyond Social Graphs: User Interactions in Online Social Networks and their Implications , 2012, TWEB.

[31]  Hang-Hyun Jo,et al.  A signalling explanation for preferential attachment in the evolution of social networks , 2010 .

[32]  Niklas Carlsson,et al.  Evolution of an online social aggregation network: an empirical study , 2009, IMC '09.

[33]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[34]  Xiao Fan Wang,et al.  How people make friends in social networking sites - A microscopic perspective , 2011, ArXiv.

[35]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[36]  Thomas A. DiPrete,et al.  Cumulative Advantage as a Mechanism for Inequality: A Review of Theoretical and Empirical Developments , 2006 .

[37]  Ben Y. Zhao,et al.  Multi-scale dynamics in a massive online social network , 2012, Internet Measurement Conference.

[38]  J. Meiers Leadership and Isolation, A Study of Personality in Inter-Personal Relations , 1951 .

[39]  Luis E C Rocha,et al.  Information dynamics shape the sexual networks of Internet-mediated prostitution , 2010, Proceedings of the National Academy of Sciences.

[40]  Patti M. Valkenburg,et al.  Online Communication and Adolescent Well-Being: Testing the Stimulation Versus the Displacement Hypothesis , 2007, J. Comput. Mediat. Commun..

[41]  Fredrik Liljeros,et al.  Preferential attachment in sexual networks , 2007, Proceedings of the National Academy of Sciences.

[42]  S. Redner,et al.  Organization of growing random networks. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Li-Jie Zhang,et al.  Network evolution by nonlinear preferential rewiring of edges , 2011 .

[44]  Mikko Alava,et al.  Correlations in bipartite collaboration networks , 2005, physics/0508027.

[45]  Y. Lai,et al.  Self-organized scale-free networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[47]  S. Redner,et al.  Connectivity of growing random networks. , 2000, Physical review letters.

[48]  Kevin Lewis,et al.  Beyond and Below Racial Homophily: ERG Models of a Friendship Network Documented on Facebook1 , 2010, American Journal of Sociology.

[49]  A. Pentland,et al.  Computational Social Science , 2009, Science.

[50]  G. Caldarelli,et al.  Assortative model for social networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Rossano Schifanella,et al.  Link Creation and Profile Alignment in the aNobii Social Network , 2010, 2010 IEEE Second International Conference on Social Computing.

[52]  Judith S. Donath,et al.  Homophily in online dating: when do you like someone like yourself? , 2005, CHI Extended Abstracts.

[53]  Tao Zhou,et al.  A general model for collaboration networks , 2005 .

[54]  Jari Saramäki,et al.  A comparative study of social network models: Network evolution models and nodal attribute models , 2008, Soc. Networks.

[55]  Robin I. M. Dunbar Social cognition on the Internet: testing constraints on social network size , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  Linyuan Lu,et al.  Potential Theory for Directed Networks , 2012, PloS one.

[57]  Z. Di,et al.  Emergence of global preferential attachment from local interaction , 2009, 0910.0103.

[58]  VoLUME Xxxix,et al.  THE AMERICAN JOURNAL OF SOCIOLOGY , 2010 .

[59]  S Redner,et al.  Degree distributions of growing networks. , 2001, Physical review letters.

[60]  Tim S. Evans,et al.  Exact solutions for network rewiring models , 2007 .

[61]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[62]  Marco Gonzalez,et al.  Author's Personal Copy Social Networks Tastes, Ties, and Time: a New Social Network Dataset Using Facebook.com , 2022 .

[63]  Tao Zhou,et al.  MODELLING COLLABORATION NETWORKS BASED ON NONLINEAR PREFERENTIAL ATTACHMENT , 2007 .

[64]  Alexandros Ntoulas,et al.  Homophily in the Digital World: A LiveJournal Case Study , 2010, IEEE Internet Computing.

[65]  Lars Backstrom,et al.  The Anatomy of the Facebook Social Graph , 2011, ArXiv.

[66]  M. Thelwall Homophily in MySpace , 2009, J. Assoc. Inf. Sci. Technol..

[67]  M. Thelwall,et al.  Social network site changes over time: The case of MySpace , 2010 .

[68]  Kazuyuki Tanaka,et al.  Generation of complex bipartite graphs by using a preferential rewiring process. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Michael Szell,et al.  Measuring social dynamics in a massive multiplayer online game , 2009, Soc. Networks.

[70]  Jure Leskovec,et al.  Microscopic evolution of social networks , 2008, KDD.

[71]  Jure Leskovec,et al.  Planetary-scale views on a large instant-messaging network , 2008, WWW.

[72]  Mason A. Porter,et al.  Social Structure of Facebook Networks , 2011, ArXiv.

[73]  A. Vázquez Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[75]  Vittorio Loreto,et al.  Collaborative Tagging and Semiotic Dynamics , 2006, ArXiv.

[76]  M. Newman Clustering and preferential attachment in growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Tore Opsahl,et al.  Modeling the evolution of continuously-observed networks: Communication in a Facebook-like community , 2010, 1010.2141.

[78]  Lauren Wood 技術解説 IEEE Internet Computing , 1999 .

[79]  R. Morton,et al.  Who Shall Survive? , 1954, Mental Health.