Cross-separatrix flux in time-aperiodic and time-impulsive flows

A theory for the fluid flux generated across heteroclinic separatrices under the influence of time-aperiodic perturbations is presented. The flux is explicitly defined as the amount of fluid transferred per unit time, and its detailed time-dependence monitored. The perturbations are allowed to be significantly discontinuous in time, including for example impulsive (Dirac delta type) discontinuities. The flux is characterized in terms of time-varying separatrices, with easily computable formulae (directly related to Melnikov functions) provided.

[1]  Sanjeeva Balasuriya,et al.  VISCOUS PERTURBATIONS OF VORTICITY-CONSERVING FLOWS AND SEPARATRIX SPLITTING , 1998 .

[2]  P. Holmes Transport in Two-Dimensional Maps , 1990 .

[3]  J. Scheurle Chaotic solutions of systems with almost periodic forcing , 1986 .

[4]  Sanjeeva Balasuriya Approach for maximizing chaotic mixing in microfluidic devices , 2005 .

[5]  D. Stoffer Transversal homoclinic points and hyperbolic sets for non-autonomous maps I , 1988 .

[6]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[7]  Robert W. Easton,et al.  Computing the dependence on a parameter of a family of unstable manifolds: generalized Melnikov formulas , 1984 .

[8]  Andrew C. Poje,et al.  Universal properties of chaotic transport in the presence of diffusion , 1999 .

[9]  Julio M. Ottino,et al.  Scaling and multifractal properties of mixing in chaotic flows , 1992 .

[10]  Stephen Wiggins,et al.  Chaotic transport in dynamical systems , 1991 .

[11]  D. Stoffer Transversal homoclinic points and hyperbolic sets for non-autonomous maps II , 1988 .

[12]  George Haller,et al.  Geometry of Cross-Stream Mixing in a Double-Gyre Ocean Model , 1999 .

[13]  S. Wiggins,et al.  Lobe area in adiabatic Hamiltonian systems , 1991 .

[14]  Sanjeeva Balasuriya,et al.  Optimal perturbation for enhanced chaotic transport , 2005 .

[15]  Amadeu Delshams,et al.  Poincaré - Melnikov - Arnold method for analytic planar maps , 1996 .

[16]  E. Grenier,et al.  Viscous perturbations of marginally stable Euler flow and finite-time Melnikov theory , 2005 .

[17]  George Haller,et al.  Finite time transport in aperiodic flows , 1998 .

[18]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[19]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[20]  K. Meyer,et al.  MELNIKOV TRANSFORMS, BERNOULLI BUNDLES, AND ALMOST PERIODIC PERTURBATIONS , 1989 .

[21]  Sanjeeva Balasuriya,et al.  Direct Chaotic Flux Quantification in Perturbed Planar Flows: General Time-Periodicity , 2005, SIAM J. Appl. Dyn. Syst..

[22]  S. Wiggins Chaos in the dynamics generated by sequences of maps, with applications to chaotic advection in flows with aperiodic time dependence , 1999 .

[23]  Sanjeeva Balasuriya,et al.  Melnikov theory for finite-time vector fields , 2000 .

[24]  S. Wiggins,et al.  An analytical study of transport, mixing and chaos in an unsteady vortical flow , 1990, Journal of Fluid Mechanics.

[25]  G. Kovačič,et al.  A geometric criterion for adiabatic chaos , 1994 .

[26]  Homoclinical structures in nonautonomous systems: Nonautonomous chaos. , 1992, Chaos.

[27]  S. Wiggins,et al.  Transport in two-dimensional maps , 1990 .

[28]  Christopher K. R. T. Jones,et al.  Quantifying transport in numerically generated velocity fields , 1997 .