Cross-separatrix flux in time-aperiodic and time-impulsive flows
暂无分享,去创建一个
[1] Sanjeeva Balasuriya,et al. VISCOUS PERTURBATIONS OF VORTICITY-CONSERVING FLOWS AND SEPARATRIX SPLITTING , 1998 .
[2] P. Holmes. Transport in Two-Dimensional Maps , 1990 .
[3] J. Scheurle. Chaotic solutions of systems with almost periodic forcing , 1986 .
[4] Sanjeeva Balasuriya. Approach for maximizing chaotic mixing in microfluidic devices , 2005 .
[5] D. Stoffer. Transversal homoclinic points and hyperbolic sets for non-autonomous maps I , 1988 .
[6] Kenneth J. Palmer,et al. Exponential dichotomies and transversal homoclinic points , 1984 .
[7] Robert W. Easton,et al. Computing the dependence on a parameter of a family of unstable manifolds: generalized Melnikov formulas , 1984 .
[8] Andrew C. Poje,et al. Universal properties of chaotic transport in the presence of diffusion , 1999 .
[9] Julio M. Ottino,et al. Scaling and multifractal properties of mixing in chaotic flows , 1992 .
[10] Stephen Wiggins,et al. Chaotic transport in dynamical systems , 1991 .
[11] D. Stoffer. Transversal homoclinic points and hyperbolic sets for non-autonomous maps II , 1988 .
[12] George Haller,et al. Geometry of Cross-Stream Mixing in a Double-Gyre Ocean Model , 1999 .
[13] S. Wiggins,et al. Lobe area in adiabatic Hamiltonian systems , 1991 .
[14] Sanjeeva Balasuriya,et al. Optimal perturbation for enhanced chaotic transport , 2005 .
[15] Amadeu Delshams,et al. Poincaré - Melnikov - Arnold method for analytic planar maps , 1996 .
[16] E. Grenier,et al. Viscous perturbations of marginally stable Euler flow and finite-time Melnikov theory , 2005 .
[17] George Haller,et al. Finite time transport in aperiodic flows , 1998 .
[18] W. A. Coppel. Dichotomies in Stability Theory , 1978 .
[19] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[20] K. Meyer,et al. MELNIKOV TRANSFORMS, BERNOULLI BUNDLES, AND ALMOST PERIODIC PERTURBATIONS , 1989 .
[21] Sanjeeva Balasuriya,et al. Direct Chaotic Flux Quantification in Perturbed Planar Flows: General Time-Periodicity , 2005, SIAM J. Appl. Dyn. Syst..
[22] S. Wiggins. Chaos in the dynamics generated by sequences of maps, with applications to chaotic advection in flows with aperiodic time dependence , 1999 .
[23] Sanjeeva Balasuriya,et al. Melnikov theory for finite-time vector fields , 2000 .
[24] S. Wiggins,et al. An analytical study of transport, mixing and chaos in an unsteady vortical flow , 1990, Journal of Fluid Mechanics.
[25] G. Kovačič,et al. A geometric criterion for adiabatic chaos , 1994 .
[26] Homoclinical structures in nonautonomous systems: Nonautonomous chaos. , 1992, Chaos.
[27] S. Wiggins,et al. Transport in two-dimensional maps , 1990 .
[28] Christopher K. R. T. Jones,et al. Quantifying transport in numerically generated velocity fields , 1997 .