A quasi-droplet optofluidic ring resonator laser using a micro-bubble

Optofluidic ring resonator lasers based on micro-bubbles filled with liquid gain medium are demonstrated. Due to the sub-micron wall thickness of the micro-bubble, significant amount of the electric field resides inside the liquid. Consequently, micro-bubbles mimic the droplets in air that have 3-dimensional optical confinement, extremely high Q-factors, and versatility in handling liquids of different refractive index. Furthermore, they enable repetitive interrogation and easy directional laser emission out-coupling without evaporation or size/shape variations. The laser using Rhodamine 6G in methanol is achieved with a threshold of 300 nJ/mm2 and 5.3 μJ/mm2 for 1 mM and 10 μM in concentration, respectively.

[1]  J. Stone,et al.  Measurements of the Absorption of Light in Low-Loss Liquids , 1972 .

[2]  R. Chang,et al.  Laser diagnostics for droplet characterization: Application of morphology dependent resonances , 1996 .

[3]  A. L. Demirel,et al.  Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface. , 2007, Optics letters.

[4]  Sindy K. Y. Tang,et al.  Continuously tunable microdroplet-laser in a microfluidic channel. , 2011, Optics express.

[5]  A. Campillo,et al.  Optical processes in microcavities , 1996 .

[6]  Uriel Levy,et al.  On-chip switching of a silicon nitride micro-ring resonator based on digital microfluidics platform. , 2010, Optics express.

[7]  Daniel T. Chiu,et al.  Chemistry and biology in femtoliter and picoliter volume droplets. , 2009, Accounts of chemical research.

[8]  M Sumetsky,et al.  Super free spectral range tunable optical microbubble resonator. , 2010, Optics letters.

[9]  Jonathan Ward,et al.  Single-input spherical microbubble resonator. , 2011, Optics letters.

[10]  Jay D. Eversole,et al.  Spectral properties of lasing microdroplets , 1992 .

[11]  R. Chang,et al.  Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances. , 1984, Optics letters.

[12]  R. Windeler,et al.  Optical microbubble resonator. , 2010, Optics letters.

[13]  Sindy K. Y. Tang,et al.  A multi-color fast-switching microfluidic droplet dye laser. , 2009, Lab on a chip.

[14]  H J Moon,et al.  Cylindrical microcavity laser based on the evanescent-wave-coupled gain. , 2000, Physical review letters.

[15]  Xudong Fan,et al.  Bioinspired optofluidic FRET lasers via DNA scaffolds , 2010, Proceedings of the National Academy of Sciences.

[16]  Mani Hossein-Zadeh,et al.  Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium. , 2006, Optics express.

[17]  Richard Perron,et al.  Lasing droplets in a microfabricated channel. , 2007, Optics letters.

[18]  Demetri Psaltis,et al.  Optofluidic dye lasers , 2008 .

[19]  M. Lonergan,et al.  Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors. , 2000, Optics letters.

[20]  Xudong Fan,et al.  Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators , 2010, Asia Communications and Photonics Conference and Exhibition.

[21]  Scott Lacey,et al.  Versatile opto-fluidic ring resonator lasers with ultra-low threshold. , 2007, Optics express.

[22]  A. Kurt,et al.  Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface , 2007 .

[23]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[24]  Xudong Fan,et al.  Optofluidic ring resonator based dye laser , 2007 .