Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

Abstract Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas.

[1]  Y. S. Lin,et al.  Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods , 2000 .

[2]  Y. S. Lin,et al.  Oxygen permeation through thin mixed-conducting solid oxide membranes , 1994 .

[3]  Bart A. van Hassel,et al.  Oxygen transfer across composite oxygen transport membranes , 2004 .

[4]  P. Glarborg,et al.  Chemically Reacting Flow : Theory and Practice , 2003 .

[5]  J. Caro,et al.  Oxygen permeation study of perovskite hollow fiber membranes , 2005 .

[6]  J. Kuipers,et al.  Feasibility study of a novel membrane reactor for syngas production: Part 2: Adiabatic reactor simulations , 2007 .

[7]  S. Uemura,et al.  RHODIUM(II) ACETATE: AN EFFECTIVE HOMOGENEOUS CATALYST FOR SELECTIVE ALLYLIC OXIDATION AND CARBON–CARBON BOND FISSION OF OLEFINS , 1982 .

[8]  J. M. Serra,et al.  Fluid dynamic modeling of oxygen permeation through mixed ionicelectronic conducting membranes , 2011 .

[9]  Shaomin Liu,et al.  Development of mixed conducting membranes for clean coal energy delivery , 2009 .

[10]  X. Tan,et al.  Oxyfuel combustion using a catalytic ceramic membrane reactor , 2008 .

[11]  C. Tsai Dense perovskite membrane reactors for partial oxidation of methane to syngas , 1997 .

[12]  Harumi Yokokawa,et al.  Oxygen permeation modelling of perovskites , 1993 .

[13]  W. Thomson,et al.  Stability of La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite membranes in reducing and nonreducing environments , 1998 .

[14]  J. Kilner,et al.  Oxygen surface exchange on gadolinia doped ceria , 2000 .

[15]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[16]  J. Baumard,et al.  Oxygen semipermeability and electronic conductivity in calcia-stabilized zirconia , 1982 .

[17]  Oxygen permeation and stability of La0.4Ca0.6Fe1−xCoxO3−δ (x = 0, 0.25, 0.5) membranes , 2003 .

[18]  Y. S. Lin,et al.  Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas , 2000 .

[19]  J. Kuipers,et al.  Feasibility study of a novel membrane reactor for syngas production: Part 1: Experimental study of O2 permeation through perovskite membranes under reducing and non-reducing atmospheres , 2007 .

[20]  William J. Thomson,et al.  Oxygen permeation rates through ion-conducting perovskite membranes , 1999 .

[21]  Zongping Shao,et al.  Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8−xO3−δ ceramic membranes , 2000 .

[22]  J. R. Scotti,et al.  Available From , 1973 .

[23]  Michael Modigell,et al.  Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties , 2010 .

[24]  Geert Versteeg,et al.  High-temperature membrane reactors: potential and problems , 1999 .

[25]  Henricus J.M. Bouwmeester,et al.  Dense ceramic membranes for methane conversion , 2003 .

[26]  Y. Sekine,et al.  Reaction and oxygen permeation studies in Sm0.4Ba0.6Fe0.8Co0.2O3 − δ membrane reactor for partial oxidation of methane to syngas , 2005 .

[27]  Noboru Yamazoe,et al.  OXYGEN PERMEATION THROUGH PEROVSKITE-TYPE OXIDES , 1985 .

[28]  Ito Wataru,et al.  Oxygen separation from compressed air using a mixed conducting perovskite-type oxide membrane , 2007 .

[29]  P. Pacey,et al.  Mechanism of Oxygen Permeation Through Lime‐Stabilized Zirconia , 1985 .

[30]  Y. S. Lin,et al.  Analysis of oxidative coupling of methane in dense oxide membrane reactors , 1995 .

[31]  T. Ishihara,et al.  Oxygen surface exchange and diffusion in LaGaO3 based perovskite type oxides , 1998 .

[32]  R. Cai,et al.  Investigation on the structure stability and oxygen permeability of titanium-doped perovskite-type oxides of BaTi0.2CoxFe0.8−xO3−δ (x=0.2–0.6) , 2003 .

[33]  P. Dyer,et al.  Ion transport membrane technology for oxygen separation and syngas production , 2000 .

[34]  X. Tan,et al.  Mixed Conducting Ceramics for Catalytic Membrane Processing , 2006 .

[35]  J. Kilner,et al.  Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure , 1996 .

[36]  H. Verweij,et al.  Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor , 1995 .

[37]  H. Wise,et al.  Perovskite catalysts for methane combustion , 1990 .

[38]  R. Drew,et al.  Wettability and spreading kinetics of molten aluminum on copper-coated ceramics , 2006 .

[39]  C. Guizard,et al.  Limitations and potentials of oxygen transport dense and porous ceramic membranes for oxidation reactions , 2005 .

[40]  George R. Gavalas,et al.  Oxygen selective ceramic hollow fiber membranes , 2005 .

[41]  H. Bouwmeester,et al.  Chapter 10 Dense ceramic membranes for oxygen separation , 1996 .

[42]  Y. S. Lin,et al.  A semi-empirical equation for oxygen nonstoichiometry of perovskite-type ceramics , 2002 .

[43]  Juergen Fleig On the current-voltage characteristics of charge transfer reactions at mixed conducting electrodes on solid electrolytes. , 2005, Physical chemistry chemical physics : PCCP.

[44]  Xiaoyao Tan,et al.  Design of mixed conducting ceramic membranes/reactors for the partial oxidation of methane to syngas , 2009 .

[45]  A. Jacobson,et al.  Oxygen permeation studies of SrCo0.8Fe0.2O3 − δ , 1995 .

[46]  Olav Bolland,et al.  High-temperature membranes in power generation with CO2 capture , 2004 .

[47]  A. Ono,et al.  A Database of Normal Spectral Emissivities of Metals at High Temperatures , 1999 .

[48]  Meilin Liu,et al.  Classical, phenomenological analysis of the kinetics of reactions at the gas-exposed surface of mixed ionic electronic conductors , 2006 .

[49]  A. Poater,et al.  Catalysis Science and Technology , 2022 .

[50]  Henricus J.M. Bouwmeester,et al.  Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides , 1994 .

[51]  C. Sung,et al.  Structural response of counterflow diffusion flames to strain rate variations , 1995 .

[52]  J. Baumard,et al.  Mixed conduction and defect structure of ZrO/sub 2/-CeO/sub 2/-Y/sub 2/O/sub 3/ solid solutions , 1984 .

[53]  Sangtae Kim,et al.  Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation , 1998 .

[54]  Wanqin Jin,et al.  Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas , 2000 .

[55]  You Cong,et al.  Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane , 2002 .

[56]  Alexander Mitsos,et al.  Ion transport membrane reactors for oxy-combustionPart II: Analysis and comparison of alternatives , 2011 .

[57]  Roger B. Poeppel,et al.  Dense ceramic membranes for partial oxidation of methane to syngas , 1995 .

[58]  J. Kilner,et al.  Oxygen ion diffusivity, surface exchange and ionic conductivity in single crystal Gadolinia doped Ceria , 1998 .

[59]  L. Cot,et al.  Fundamentals of inorganic membrane science and technology , 1996 .

[60]  Yuehe Lin,et al.  Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane , 1998 .

[61]  N. Yamazoe,et al.  Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides , 1988 .