Robust Estimation and Wavelet Thresholding in Partial Linear Models

This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to estimate the components of the partial linear model by establishing a connection between an $l_1$-penalty based wavelet estimator of the nonparametric component and Huber's M-estimation of a standard linear model with outliers. Some general results on the large sample properties of the estimates of both the parametric and the nonparametric part of the model are established. Simulations and a real example are used to illustrate the general results and to compare the proposed methodology with other methods available in the recent literature.

[1]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[2]  B. Yandell,et al.  Semi-Parametric Generalized Linear Models. , 1985 .

[3]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[4]  J. Rice Convergence rates for partially splined models , 1986 .

[5]  A. A. Weiss,et al.  Semiparametric estimates of the relation between weather and electricity sales , 1986 .

[6]  Hung Chen,et al.  Convergence Rates for Parametric Components in a Partly Linear Model , 1988 .

[7]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[8]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Hung Chen,et al.  Selection of the splined variables and convergence rates in a partial spline model , 1991 .

[10]  Hung Chen,et al.  A two-stage spline smoothing method for partially linear models , 1991 .

[11]  C. Radhakrishna Rao,et al.  M-estimation of multivariate linear regression parameters under a convex discrepancy function , 1992 .

[12]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Stephen G. Donald,et al.  Series estimation of semilinear models , 1994 .

[14]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[15]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[16]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[17]  Anton Schick,et al.  Root-n-consistent and efficient estimation in semiparametric additive regression models , 1996 .

[18]  Young K. Truong,et al.  Local Linear Estimation in Partly Linear Models , 1997 .

[19]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[20]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[21]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[22]  Jianqing Fan,et al.  Regularization of Wavelet Approximations , 2001 .

[23]  François G. Meyer Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series , 2003, IEEE Transactions on Medical Imaging.

[24]  Xiao-Wen Chang,et al.  Wavelet estimation of partially linear models , 2004, Comput. Stat. Data Anal..

[25]  Torbjørn Vik,et al.  Non-Gaussian Statistical Appearance Models. Application to the Creation of a Probabilistic Atlas of Brain Perfusion in Medical Imaging. (Modèles statistiques d'apparence non gaussiens. Application à la création d'un atlas probabiliste de perfusion cérébrale en imagerie médicale) , 2004 .

[26]  P. Charbonnier,et al.  A Bayesian approach to object detection using probabilistic appearance-based models , 2004 .

[27]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[28]  Mila Nikolova,et al.  Analysis of Half-Quadratic Minimization Methods for Signal and Image Recovery , 2005, SIAM J. Sci. Comput..

[29]  E. Bullmore,et al.  Penalized partially linear models using sparse representations with an application to fMRI time series , 2005, IEEE Transactions on Signal Processing.