URPD: a specific product primer design tool

BackgroundPolymerase chain reaction (PCR) plays an important role in molecular biology. Primer design fundamentally determines its results. Here, we present a currently available software that is not located in analyzing large sequence but used for a rather straight-forward way of visualizing the primer design process for infrequent users.FindingsURPD (yoUR Primer Design), a web-based specific product primer design tool, combines the NCBI Reference Sequences (RefSeq), UCSC In-Silico PCR, memetic algorithm (MA) and genetic algorithm (GA) primer design methods to obtain specific primer sets. A friendly user interface is accomplished by built-in parameter settings. The incorporated smooth pipeline operations effectively guide both occasional and advanced users. URPD contains an automated process, which produces feasible primer pairs that satisfy the specific needs of the experimental design with practical PCR amplifications. Visual virtual gel electrophoresis and in silico PCR provide a simulated PCR environment. The comparison of Practical gel electrophoresis comparison to virtual gel electrophoresis facilitates and verifies the PCR experiment. Wet-laboratory validation proved that the system provides feasible primers.ConclusionsURPD is a user-friendly tool that provides specific primer design results. The pipeline design path makes it easy to operate for beginners. URPD also provides a high throughput primer design function. Moreover, the advanced parameter settings assist sophisticated researchers in performing experiential PCR. Several novel functions, such as a nucleotide accession number template sequence input, local and global specificity estimation, primer pair redesign, user-interactive sequence scale selection, and virtual and practical PCR gel electrophoresis discrepancies have been developed and integrated into URPD. The URPD program is implemented in JAVA and freely available at http://bio.kuas.edu.tw/urpd/.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  J. Robertson,et al.  An introduction to PCR primer design and optimization of amplification reactions. , 1998, Methods in molecular biology.

[3]  P. Venta,et al.  Design factors that influence PCR amplification success of cross-species primers among 1147 mammalian primer pairs , 2006, BMC Genomics.

[4]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[5]  E. Teeling,et al.  UniPrime: a workflow-based platform for improved universal primer design , 2008, Nucleic acids research.

[6]  Nicola Stokes,et al.  UniPrime2: a web service providing easier Universal Primer design , 2009, Nucleic Acids Res..

[7]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[8]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences: current status, policy and new initiatives , 2008, Nucleic Acids Res..

[9]  Bernd Freisleben,et al.  A Genetic Local Search Approach to the Quadratic Assignment Problem , 1997, ICGA.

[10]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  K. D. Jong Learning with Genetic Algorithms: An Overview , 2005, Machine Learning.

[13]  Anton Yuryev,et al.  Predicting the success of primer extension genotyping assays using statistical modeling. , 2002, Nucleic acids research.

[14]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[15]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. MacKay,et al.  Evaluation of the impact of single nucleotide polymorphisms and primer mismatches on quantitative PCR , 2009, BMC biotechnology.

[17]  Li-Yeh Chuang,et al.  Specific PCR product primer design using memetic algorithm , 2009, Biotechnology progress.

[18]  Jain-Shing Wu,et al.  Primer design using genetic algorithm , 2004, Bioinform..

[19]  Wing-Kin Sung,et al.  G-PRIMER: greedy algorithm for selecting minimal primer set , 2004, Bioinform..

[20]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[21]  Reidar Andreson,et al.  Predicting failure rate of PCR in large genomes , 2008, Nucleic acids research.

[22]  Gonzalo Navarro,et al.  A guided tour to approximate string matching , 2001, CSUR.

[23]  Kenneth DeJong,et al.  Learning with genetic algorithms: An overview , 1988, Machine Learning.

[24]  Jack A. M. Leunissen,et al.  Turning CFCs into salt. , 1996, Nucleic Acids Res..

[25]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[26]  C. Y. Lin,et al.  Primer Design Assistant (PDA): a web-based primer design tool , 2003, Nucleic Acids Res..

[27]  J. Butler,et al.  AutoDimer: a screening tool for primer-dimer and hairpin structures. , 2004, BioTechniques.