Approximate straightest path computation and its application in parameterization

This paper proposes an approaching method to compute the straightest path between two vertices on meshes. An initial cutting plane is first constructed using the normal information of the source and destination vertices. Then an optimal cutting plane is iteratively created by comparing with previous path distance. Our study shows that the final straightest path based on this optimal cutting plane is more accurate and insensitive to the mesh boundary. Furthermore, we apply the straightest path result to compute the measured boundary in the parameter domain for mesh parameterization, and we obtain a new computing formula for vertex stretch in the planar parameterization. Experimental results show that our parameterization method can effectively reduce distortions.

[1]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[3]  Jack Snoeyink,et al.  Reducing the memory required to find a geodesic shortest path on a large mesh , 2009, GIS.

[4]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[5]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[6]  Hiromasa Suzuki,et al.  Approximate shortest path on a polyhedral surface and its applications , 2001, Comput. Aided Des..

[7]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[8]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[9]  Tamar Frankel [The theory and the practice...]. , 2001, Tijdschrift voor diergeneeskunde.

[10]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[11]  Laurent D. Cohen,et al.  Geodesic Computations for Fast and Accurate Surface Remeshing and Parameterization , 2005 .

[12]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[13]  Dani Lischinski,et al.  Layered shape synthesis: automatic generation of control maps for non-stationary textures , 2009, SIGGRAPH 2009.

[14]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[15]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[16]  Yunjin Lee,et al.  Mesh parameterization with a virtual boundary , 2002, Comput. Graph..

[17]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[18]  Sungyeol Lee,et al.  Straightest Paths on Meshes by Cutting Planes , 2006, GMP.

[19]  Konrad Polthier,et al.  Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.

[20]  Hans-Peter Seidel,et al.  A fast and simple stretch-minimizing mesh parameterization , 2004, Proceedings Shape Modeling Applications, 2004..

[21]  Yiying Tong,et al.  Geodesics-based one-to-one parameterization of 3D triangle meshes , 2005, IEEE MultiMedia.

[22]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[23]  Shi-Qing Xin,et al.  Improving Chen and Han's algorithm on the discrete geodesic problem , 2009, TOGS.

[24]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[25]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[26]  Chi-Wing Fu,et al.  A divide-and-conquer approach for automatic polycube map construction , 2009, Comput. Graph..

[27]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[28]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.