Rational engineering of synthetic microbial systems: from single cells to consortia.

[1]  Domitilla Del Vecchio,et al.  Programming Cells to Work for Us , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[2]  Stephen P. Diggle,et al.  Progress in and promise of bacterial quorum sensing research , 2017, Nature.

[3]  Bernd Mueller-Roeber,et al.  Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae , 2017, Front. Bioeng. Biotechnol..

[4]  Mary J Dunlop,et al.  Design and Selection of a Synthetic Feedback Loop for Optimizing Biofuel Tolerance. , 2017, ACS synthetic biology.

[5]  Lingchong You,et al.  Programmable assembly of pressure sensors using pattern-forming bacteria , 2017, Nature Biotechnology.

[6]  Andrew E. Blanchard,et al.  An integrative circuit–host modelling framework for predicting synthetic gene network behaviours , 2017, Nature Microbiology.

[7]  Alexandra M. Westbrook,et al.  Computational design of small transcription activating RNAs for versatile and dynamic gene regulation , 2017, Nature Communications.

[8]  Jeff Hasty,et al.  Synchronized DNA cycling across a bacterial population , 2017, Nature Genetics.

[9]  Q. Ouyang,et al.  Insulated transcriptional elements enable precise design of genetic circuits , 2017, Nature Communications.

[10]  C. Gersbach,et al.  Mammalian Synthetic Biology: Engineering Biological Systems. , 2017, Annual review of biomedical engineering.

[11]  J. Collins,et al.  Complex cellular logic computation using ribocomputing devices , 2017, Nature.

[12]  L. Tsimring,et al.  A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis , 2017, Nature Microbiology.

[13]  G. Church,et al.  CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria , 2017, Nature.

[14]  Albert Jeltsch,et al.  Design of synthetic epigenetic circuits featuring memory effects and reversible switching based on DNA methylation , 2017, Nature Communications.

[15]  Christopher A. Voigt,et al.  Engineering RGB color vision into Escherichia coli. , 2017, Nature chemical biology.

[16]  Hongli Wang,et al.  Rational Design of an Ultrasensitive Quorum-Sensing Switch. , 2017, ACS synthetic biology.

[17]  Y. Lai,et al.  Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination , 2017, eLife.

[18]  Domitilla Del Vecchio,et al.  Resource Competition Shapes the Response of Genetic Circuits , 2017, bioRxiv.

[19]  Kristala L. J. Prather,et al.  Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit , 2017, Nature Biotechnology.

[20]  W. Bentley,et al.  Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling , 2017, Nature Communications.

[21]  Jeff Hasty,et al.  Suppression of Beneficial Mutations in Dynamic Microbial Populations. , 2017, Physical review letters.

[22]  A. Jaramillo,et al.  Engineering orthogonal dual transcription factors for multi-input synthetic promoters , 2016, Nature Communications.

[23]  Vitor B. Pinheiro,et al.  Synthetic biology approaches to biological containment: pre-emptively tackling potential risks , 2016, Essays in biochemistry.

[24]  Andrew E. Blanchard,et al.  Engineering robust and tunable spatial structures with synthetic gene circuits , 2016, Nucleic acids research.

[25]  J. Keasling,et al.  A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae , 2016, Nucleic acids research.

[26]  Christopher J Petzold,et al.  Programming mRNA decay to modulate synthetic circuit resource allocation , 2016, Nature Communications.

[27]  M. Khammash,et al.  Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth , 2016, Nature Communications.

[28]  Adriano Bonforti,et al.  A Synthetic Multicellular Memory Device. , 2016, ACS synthetic biology.

[29]  L. Tsimring,et al.  Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. , 2016, Current opinion in biotechnology.

[30]  T. Lu,et al.  Synthetic recombinase-based state machines in living cells , 2016, Science.

[31]  M. Omar Din,et al.  Synchronized cycles of bacterial lysis for in vivo delivery , 2016, Nature.

[32]  Nicolas Perry,et al.  Wiring Together Synthetic Bacterial Consortia to Create a Biological Integrated Circuit. , 2016, ACS synthetic biology.

[33]  Domitilla Del Vecchio,et al.  Creating Single-Copy Genetic Circuits. , 2016, Molecular cell.

[34]  Erry Gunawan,et al.  Blue light-mediated transcriptional activation and repression of gene expression in bacteria , 2016, Nucleic acids research.

[35]  Christopher A. Voigt,et al.  Post-translational control of genetic circuits using Potyvirus proteases , 2016, Nucleic acids research.

[36]  Tomasz Blazejewski,et al.  Principles for designing synthetic microbial communities. , 2016, Current opinion in microbiology.

[37]  Timothy K. Lu,et al.  Synthetic mixed-signal computation in living cells , 2016, Nature Communications.

[38]  J. Hasty,et al.  Quorum Sensing Communication Modules for Microbial Consortia. , 2016, ACS synthetic biology.

[39]  Guillaume Lambert,et al.  Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components , 2016, Cell.

[40]  Christopher V. Rao,et al.  Collective Space-Sensing Coordinates Pattern Scaling in Engineered Bacteria , 2016, Cell.

[41]  Christopher A. Voigt,et al.  Genetic circuit design automation , 2016, Science.

[42]  Satya Prakash,et al.  Using RNA as Molecular Code for Programming Cellular Function. , 2016, ACS synthetic biology.

[43]  Y. Benenson,et al.  Synthetic biology of cell signaling , 2016, Natural Computing.

[44]  M. Buck,et al.  Tools and Principles for Microbial Gene Circuit Engineering. , 2016, Journal of molecular biology.

[45]  M. di Bernardo,et al.  In Vivo Real-Time Control of Gene Expression: A Comparative Analysis of Feedback Control Strategies in Yeast. , 2016, ACS synthetic biology.

[46]  Lingchong You,et al.  Coupling spatial segregation with synthetic circuits to control bacterial survival , 2016, Molecular systems biology.

[47]  L. Tsimring,et al.  Orthogonal Modular Gene Repression in Escherichia coli Using Engineered CRISPR/Cas9. , 2016, ACS synthetic biology.

[48]  Christopher A. Voigt,et al.  Antisense transcription as a tool to tune gene expression , 2016, Molecular systems biology.

[49]  Andrew Phillips,et al.  Orthogonal intercellular signaling for programmed spatial behavior , 2016, Molecular systems biology.

[50]  C. Rodríguez-Caso,et al.  Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law , 2015, Nucleic acids research.

[51]  Tae Seok Moon,et al.  Programmable genetic circuits for pathway engineering. , 2015, Current opinion in biotechnology.

[52]  H. Salis,et al.  Automated physics-based design of synthetic riboswitches from diverse RNA aptamers , 2015, Nucleic acids research.

[53]  Johannes Geiselmann,et al.  A synthetic growth switch based on controlled expression of RNA polymerase , 2015, Molecular systems biology.

[54]  Andrew Phillips,et al.  Characterization of Intrinsic Properties of Promoters , 2015, ACS synthetic biology.

[55]  Matthew R. Bennett,et al.  Emergent genetic oscillations in a synthetic microbial consortium , 2015, Science.

[56]  Stefan Hennig,et al.  Artificial cell-cell communication as an emerging tool in synthetic biology applications , 2015, Journal of biological engineering.

[57]  Ron Weiss,et al.  Isocost Lines Describe the Cellular Economy of Genetic Circuits , 2015, Biophysical journal.

[58]  H. Salis,et al.  A portable expression resource for engineering cross-species genetic circuits and pathways , 2015, Nature Communications.

[59]  G. Stephanopoulos,et al.  Engineering Escherichia coli coculture systems for the production of biochemical products , 2015, Proceedings of the National Academy of Sciences.

[60]  Eric Klavins,et al.  Cell-cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors , 2015, bioRxiv.

[61]  I. Mijakovic,et al.  Regulatory potential of post-translational modifications in bacteria , 2015, Front. Microbiol..

[62]  Howard J. Li,et al.  Programmable probiotics for detection of cancer in urine , 2015, Science Translational Medicine.

[63]  William C. Deloache,et al.  A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. , 2015, ACS synthetic biology.

[64]  G. Stan,et al.  Quantifying cellular capacity identifies gene expression designs with reduced burden , 2015, Nature Methods.

[65]  Tom Ellis,et al.  GeneGuard: A modular plasmid system designed for biosafety. , 2015, ACS synthetic biology.

[66]  Albert J. Keung,et al.  Chromatin regulation at the frontier of synthetic biology , 2015, Nature Reviews Genetics.

[67]  G. Rödel,et al.  A yeast pheromone-based inter-species communication system , 2015, Applied Microbiology and Biotechnology.

[68]  Yizhi Cai,et al.  Intrinsic biocontainment: Multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes , 2015, Proceedings of the National Academy of Sciences.

[69]  Ryo Takeuchi,et al.  Biocontainment of genetically modified organisms by synthetic protein design , 2015, Nature.

[70]  Luke A. Gilbert,et al.  Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds , 2015, Cell.

[71]  Mauricio Barahona,et al.  Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities , 2015, Nucleic acids research.

[72]  Farren J. Isaacs,et al.  Multilayered genetic safeguards limit growth of microorganisms to defined environments , 2015, Nucleic acids research.

[73]  G. Stephanopoulos,et al.  Distributing a metabolic pathway among a microbial consortium enhances production of natural products , 2015, Nature Biotechnology.

[74]  P. Silver,et al.  Toehold Switches: De-Novo-Designed Regulators of Gene Expression , 2014, Cell.

[75]  J. Collins,et al.  Tunable protein degradation in bacteria , 2014, Nature Biotechnology.

[76]  James Sharpe,et al.  A unified design space of synthetic stripe-forming networks , 2014, Nature Communications.

[77]  Deepak Mishra,et al.  A load driver device for engineering modularity in biological networks , 2014, Nature Biotechnology.

[78]  Terence Hwa,et al.  Bacterial growth: global effects on gene expression, growth feedback and proteome partition. , 2014, Current opinion in biotechnology.

[79]  Jeffrey E. Barrick,et al.  Engineering reduced evolutionary potential for synthetic biology. , 2014, Molecular bioSystems.

[80]  Mario di Bernardo,et al.  In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks , 2014, PLoS Comput. Biol..

[81]  James J Collins,et al.  Syntrophic exchange in synthetic microbial communities , 2014, Proceedings of the National Academy of Sciences.

[82]  Howard J. Li,et al.  Rapid and tunable post-translational coupling of genetic circuits , 2014, Nature.

[83]  James J Collins,et al.  Programmable bacteria detect and record an environmental signal in the mammalian gut , 2014, Proceedings of the National Academy of Sciences.

[84]  F. Lienert,et al.  Synthetic biology in mammalian cells: next generation research tools and therapeutics , 2014, Nature Reviews Molecular Cell Biology.

[85]  Christopher A. Voigt,et al.  Genomic Mining of Prokaryotic Repressors for Orthogonal Logic Gates , 2013, Nature chemical biology.

[86]  Soon Ho Hong,et al.  Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system. , 2013, Journal of biotechnology.

[87]  Vivek K. Mutalik,et al.  Precise and reliable gene expression via standard transcription and translation initiation elements , 2013, Nature Methods.

[88]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[89]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[90]  Domitilla Del Vecchio,et al.  Modularity, context-dependence, and insulation in engineered biological circuits. , 2015, Trends in biotechnology.

[91]  Jeong Wook Lee,et al.  ‘ deadman ’ and ‘ passcode ’ microbial kill switches for bacterial containment , 2022 .