On Fourier analysis of polynomial multigrid for arbitrary multi-stage cycles

The Fourier analysis of the \emph{p}-multigrid acceleration technique is considered for a dual-time scheme applied to the advection-diffusion equation with various cycle configurations. It is found that improved convergence can be achieved through \emph{V}-cycle asymmetry where additional prolongation smoothing is applied. Experiments conducted on the artificial compressibility formulation of the Navier--Stokes equations found that these analytic findings could be observed numerically in the pressure residual, whereas velocity terms---which are more hyperbolic in character---benefited primarily from increased pseudo-time steps.

[1]  Stuart E. Rogers,et al.  Comparison of Implicit Schemes for the Incompressible Navier-Stokes Equations , 1995 .

[2]  Seokkwan Yoon,et al.  An LU-SSOR scheme for the Euler and Navier-Stokes equations , 1987 .

[3]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[4]  Paul G. Tucker,et al.  Temporal Stabilisation of Flux Reconstruction on Linear Problems , 2018, 2018 Fluid Dynamics Conference.

[5]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[6]  A. Jameson High-Order Methods for Diffusion Equation with Energy Stable Flux Reconstruction Scheme , 2011 .

[7]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[8]  Brian C. Vermeire,et al.  Optimal Runge-Kutta schemes for pseudo time-stepping with high-order unstructured methods , 2019, J. Comput. Phys..

[9]  Cornelis W. Oosterlee,et al.  On Three-Grid Fourier Analysis for Multigrid , 2001, SIAM J. Sci. Comput..

[10]  Thomas H. Pulliam,et al.  Stability Analysis of Dual-time Stepping , 2016 .

[11]  S Rogers,et al.  A comparison of implicit schemes for the incompressible Navier-Stokes equations with artificial compressibility , 1995 .

[12]  R. Peyret,et al.  Unsteady evolution of a horizontal jet in a stratified fluid , 1976, Journal of Fluid Mechanics.

[13]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[14]  Antony Jameson,et al.  Symmetric quadrature rules for simplexes based on sphere close packed lattice arrangements , 2014, J. Comput. Appl. Math..

[15]  Multigrid Methods for Hyperbolic Equations , 1991 .

[16]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[17]  Antony Jameson,et al.  On the Non-linear Stability of Flux Reconstruction Schemes , 2012, J. Sci. Comput..

[18]  Antony Jameson,et al.  Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra , 2013, Journal of Scientific Computing.

[19]  Freddie D. Witherden,et al.  PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach , 2013, Comput. Phys. Commun..

[20]  David I. Ketcheson,et al.  Optimal stability polynomials for numerical integration of initial value problems , 2012, 1201.3035.

[21]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[22]  Eleuterio F. Toro,et al.  Riemann solvers for solving the incompressible Navier-Stokes equations using the artificial compressibility method , 1992 .

[23]  Freddie D. Witherden,et al.  Locally adaptive pseudo-time stepping for high-order Flux Reconstruction , 2019, J. Comput. Phys..

[24]  J. Butcher On Runge-Kutta processes of high order , 1964, Journal of the Australian Mathematical Society.

[25]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[26]  John M. Hsu,et al.  An Implicit-Explicit Hybrid Scheme for Calculating Complex Unsteady Flows , 2002 .

[27]  Meng-Sing Liou,et al.  Multigrid Time-Accurate Integrations of Navier-Stokes Equations , 1993 .

[28]  Freddie D. Witherden,et al.  A high-order cross-platform incompressible Navier-Stokes solver via artificial compressibility with application to a turbulent jet , 2018, Comput. Phys. Commun..

[29]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .