Modelling of Cavity Optomechanical Magnetometers

Cavity optomechanical magnetic field sensors, constructed by coupling a magnetostrictive material to a micro-toroidal optical cavity, act as ultra-sensitive room temperature magnetometers with tens of micrometre size and broad bandwidth, combined with a simple operating scheme. Here, we develop a general recipe for predicting the field sensitivity of these devices. Several geometries are analysed, with a highest predicted sensitivity of 180 pT/Hz at 28 μm resolution limited by thermal noise in good agreement with previous experimental observations. Furthermore, by adjusting the composition of the magnetostrictive material and its annealing process, a sensitivity as good as 20 pT/Hz may be possible at the same resolution. This method paves a way for future design of magnetostrictive material based optomechanical magnetometers, possibly allowing both scalar and vectorial magnetometers.

[1]  A. Heidmann,et al.  Effective mass in quantum effects of radiation pressure , 1999, quant-ph/9901057.

[2]  Göran Engdahl,et al.  Chapter 2 – Modeling of Giant Magnetostrictive Materials , 2000 .

[3]  Chih-Cheng Lu,et al.  High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design , 2014, Sensors.

[4]  Warwick P. Bowen,et al.  Minimum requirements for feedback enhanced force sensing , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[5]  William J. Gallagher,et al.  High‐resolution scanning SQUID microscope , 1995 .

[6]  Junichi Isoya,et al.  Subpicotesla Diamond Magnetometry , 2014, 1411.6553.

[7]  K. Vahala,et al.  Modal coupling in traveling-wave resonators. , 2002, Optics letters.

[8]  O. Arcizet,et al.  High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators , 2008, 0805.1608.

[9]  S. Brueck,et al.  Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip , 2017, Nature Communications.

[10]  H. Tang,et al.  Cavity magnomechanics , 2015, Science Advances.

[11]  Eugene S. Polzik,et al.  Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity , 2016, Scientific Reports.

[12]  W. Bowen Experiments towards a quantum information network with squeezed light and entanglement , 2003 .

[13]  Alison B. Flatau,et al.  Magnetoelastic bending of Galfenol for sensor applications , 2005 .

[14]  C. Baker On-chip nano-optomechanical whispering gallery resonators , 2013 .

[15]  Alison B. Flatau,et al.  Experimental Investigation of Terfenol-D's Elastic Modulus , 2008 .

[16]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[17]  A. Fontcuberta i Morral,et al.  Vectorial scanning force microscopy using a nanowire sensor. , 2016, Nature nanotechnology.

[18]  D. Griffiths Introduction to Electrodynamics , 2017 .

[19]  Morio Onoe,et al.  Contour Vibrations of Isotropic Circular Plates , 1956 .

[20]  M. Simmonds,et al.  Performance of a resonant input SQUID amplifier system , 1979 .

[21]  Marcelo Wu,et al.  Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. , 2016, Nature nanotechnology.

[22]  Helen Prance,et al.  Ultra low noise induction magnetometer for variable temperature operation , 2000 .

[23]  E. Sheridan,et al.  Sensitivity and performance of cavity optomechanical field sensors , 2012 .

[24]  M. D. Lukin,et al.  Nanoscale magnetic imaging of a single electron spin under ambient conditions , 2012, Nature Physics.

[25]  M. Radparvar,et al.  Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples , 2003 .

[26]  Halina Rubinsztein-Dunlop,et al.  Ultrasensitive Optomechanical Magnetometry , 2014, Advanced materials.

[27]  J Wrachtrup,et al.  Nanoscale nuclear magnetic imaging with chemical contrast. , 2015, Nature nanotechnology.

[28]  Marilyn Wun-Fogle,et al.  Magnetostrictive Properties of Galfenol Alloys Under Compressive Stress , 2002 .

[29]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[30]  D. Liang,et al.  Stabilized Skyrmion Phase Detected in MnSi Nanowires by Dynamic Cantilever Magnetometry. , 2015, Nano letters.

[31]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[32]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[33]  W. L. Webb Aircraft navigation instruments , 1951, Electrical Engineering.

[34]  J. D. Verhoeven,et al.  Directional solidification and heat treatment of terfenol-D magnetostrictive materials , 1990 .

[35]  N. Chisholm,et al.  Magnetic resonance detection of individual proton spins using quantum reporters. , 2014, Physical review letters.

[36]  Kerry J. Vahala,et al.  Fabrication and coupling to planar high-Q silica disk microcavities , 2003 .

[37]  J. Knittel,et al.  Model of a microtoroidal magnetometer , 2012, Photonics Europe.

[38]  D. Budker,et al.  Magnetometry with Nitrogen-Vacancy Centers in Diamond , 2017 .

[39]  S. Cardoso,et al.  Improving Magnetic Field Detection Limits of Spin Valve Sensors Using Magnetic Flux Guide Concentrators , 2007, IEEE Transactions on Magnetics.

[40]  Javier Tamayo,et al.  Study of the Origin of Bending Induced by Bimetallic Effect on Microcantilever , 2007, Sensors.

[41]  D. Boucher,et al.  Modeling and Characterization of the Magnetostrictive Coupling , 1991 .

[42]  Pascal Vincent,et al.  A universal and ultrasensitive vectorial nanomechanical sensor for imaging 2D force fields. , 2017, Nature nanotechnology.

[43]  K. Chary,et al.  NMR in Biological Systems: From Molecules to Human , 2008 .

[44]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[45]  Eckhard Quandt,et al.  Giant magnetostrictive thin film materials and applications , 1997 .

[46]  J. G. Benatar,et al.  FEM IMPLEMENTATIONS OF MAGNETOSTRICTIVE-BASED APPLICATIONS , 2005 .

[47]  Marina Díaz-Michelena,et al.  Small Magnetic Sensors for Space Applications , 2009, Sensors.

[48]  Markus Aspelmeyer,et al.  Quantum optomechanics , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[49]  Quantum Noise Transfer Functions: A Practical Tool in Quantum Optics , 2001 .

[50]  G. Engdahl Handbook of Giant Magnetostrictive Materials , 1999 .

[51]  B. Hauer,et al.  A general procedure for thermomechanical calibration of nano/micro-mechanical resonators , 2013, 1305.0557.

[52]  Hongbin Sun,et al.  Single-protein spin resonance spectroscopy under ambient conditions , 2015, Science.

[53]  S. Tumański Induction coil sensors—a review , 2007 .

[54]  P. Bouchilloux,et al.  Actuators, transducers and motors based on giant magnetostrictive materials , 1997 .

[55]  G. Brawley,et al.  Nonlinear optomechanical measurement of mechanical motion , 2014, Nature Communications.

[56]  Ronald L. Walsworth,et al.  Optical magnetic detection of single-neuron action potentials using quantum defects in diamond , 2016, Proceedings of the National Academy of Sciences.

[57]  Joachim Knittel,et al.  Cooling and control of a cavity optoelectromechanical system. , 2009, Physical review letters.

[58]  Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit , 2012, 1201.3152.

[59]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[60]  Gregory P. Carman,et al.  High strain-rate magnetoelasticity in Galfenol , 2015 .

[61]  Alison B. Flatau,et al.  A Bending Mode Galfenol Electric Power Harvester , 2010 .

[62]  D. Hume,et al.  Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. , 2014, Physical review letters.

[63]  Xiaojing Zheng,et al.  A nonlinear constitutive model for Terfenol-D rods , 2005 .

[64]  V. Sudhir,et al.  Measurement-based control of a mechanical oscillator at its thermal decoherence rate , 2014, Nature.

[65]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[66]  J Knittel,et al.  Cavity optomechanical magnetometer. , 2012, Physical review letters.

[67]  J. Muhonen,et al.  Nonlinear cavity optomechanics with nanomechanical thermal fluctuations , 2016 .

[68]  Rebecca Stjernberg Bejhed,et al.  Modelling and design of planar Hall effect bridge sensors for low-frequency applications , 2013 .

[69]  Alison B. Flatau,et al.  Statistical analysis of Terfenol-D material properties , 1997, Smart Structures.

[70]  Alison B. Flatau,et al.  Structural magnetic strain model for magnetostrictive transducers , 2000 .