Optical logic circuits using double controlled logic gate

Conventional irreversible computer is power dissipative. Data loss is the major problem in such computation, but it can be minimised with a special circuit design. In this study optical `double controlled logic' (DCL) circuit is proposed, which can minimise the circuit complexity and power cost. The mathematical model of the DCL circuit is given in this study, which also has good cascadability and compactness. Some complex logic circuits (16-Boolean logic unit, grey-to-binary-to-grey code conversion and cross-bar network architecture) using controlled logic unit have also been proposed in this study. The circuits also have reversible property. The performance of the proposed circuits from the viewpoint of optical cost, optical delay and switching energy is also discussed in this study.

[1]  Kyriakos E. Zoiros,et al.  On the design of reconfigurable ultrafast all-optical NOR and NAND gates using a single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer , 2012 .

[2]  Lin Yang,et al.  Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators. , 2011, Optics express.

[3]  Richard A. Soref,et al.  Generalized optical logic elements – GOLEs , 2007 .

[4]  Neil Gershenfeld,et al.  Signal Entropy and the Thermodynamics of Computation , 1996, IBM Syst. J..

[5]  R Cuykendall,et al.  Control-specific optical Fredkin circuits. , 1987, Applied optics.

[6]  Tanay Chattopadhyay,et al.  All-optical cross-bar network architecture using TOAD based interferometric switch and designing of reconfigurable logic unit , 2011 .

[7]  K. Blow,et al.  Demonstration of an all-optical Fredkin gate , 2000 .

[8]  Tanay Chattopadhyay Simultaneous logic operations and their inverse in a single circuit using simple optical components , 2013 .

[9]  J Shamir,et al.  Optical computing and the Fredkin gates. , 1986, Applied optics.

[10]  Charles H. Bennett Thermodynamically Reversible Computation , 1984 .

[11]  Richard Soref,et al.  Reconfigurable optical directed-logic circuits using microresonator-based optical switches. , 2011, Optics express.

[12]  J Shamir,et al.  Residue arithmetic processing utilizing optical Fredkin gate arrays. , 1987, Applied optics.

[13]  Tanay Chattopadhyay Optical programmable Boolean logic unit. , 2011, Applied optics.

[14]  T. Chattopadhyay,et al.  All-optical switching by Kerr nonlinear prism and its application to of binary-to-gray-to-binary code conversion , 2012 .

[15]  Yan-qing Lu,et al.  Self-polarizing terahertz liquid crystal phase shifter , 2011 .

[16]  H. John Caulfield Zero-Energy Optical Logic: Can It Be Practical? , 2009, OSC.

[17]  Yoshiyasu Ueno Crude future vision of 300-GHz optical micro-processor units , 2010 .

[18]  C. Thirstrup,et al.  Silica-waveguide thermooptic phase shifter with low power consumption and low lateral heat diffusion , 1993, IEEE Photonics Technology Letters.

[19]  N. Ranganathan,et al.  Mach-Zehnder interferometer based design of all optical reversible binary adder , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[20]  Yuhui Lu,et al.  Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling , 2006, Nanotechnology.

[21]  Lin Yang,et al.  Demonstration of a directed optical encoder using microring-resonator-based optical switches. , 2011, Optics letters.

[22]  Joseph W. Goodman,et al.  Fan-in and Fan-out with Optical Interconnections , 1985 .

[23]  G. Papadimitriou,et al.  Optical switching: switch fabrics, techniques, and architectures , 2003 .

[24]  T. Chattopadhyay All-optical programmable Boolean logic unit using semiconductor optical amplifiers on the Mach–Zehnder interferometer arms switch , 2011 .

[25]  Karl-Heinz Brenner,et al.  Digital optical computing with symbolic substitution. , 1986 .

[26]  R. Tucker,et al.  Switching Energy and Device Size Limits on Digital Photonic Signal Processing Technologies , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Rolf Landauer,et al.  Energy requirements in communication , 1987 .

[28]  Lei Zhang,et al.  Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators. , 2011, Optics letters.

[29]  Purnima Sethi,et al.  All-Optical Reversible Logic Gates with Optically Controlled Bacteriorhodopsin Protein-Coated Microresonators , 2012 .

[30]  T.H. Lee,et al.  CMOS RF integrated circuits at 5 GHz and beyond , 2000, Proceedings of the IEEE.

[31]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[32]  H. John Caulfield,et al.  Why future supercomputing requires optics , 2010 .

[33]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[34]  Peter Ingo Borel,et al.  Photonic crystal and quantum dot technologies for all-optical switch and logic device , 2006 .

[35]  Paul R Prucnal,et al.  Experimental demonstration of an all-optical fiber-based Fredkin gate. , 2009, Optics letters.

[36]  Jian Zhang,et al.  Study on the Phase Modulation Characteristics of Liquid Crystal Spatial Light Modulator , 2006 .

[37]  N. Ranganathan,et al.  Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs , 2010, JETC.

[38]  K. Asakawa,et al.  Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks , 2004, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[39]  T. Chattopadhyay,et al.  All-Optical Modified Fredkin Gate , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[40]  Joseph Shamir,et al.  Optics inspired logic architecture. , 2007, Optics express.

[41]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[42]  Mitchell A. Thornton,et al.  Efficient adder circuits based on a conservative reversible logic gate , 2002, Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002.

[43]  J. Sakaguchi,et al.  Frequency-dependent electric dc power consumption model including quantum-conversion efficiencies in ultrafast all-optical semiconductor gates around 160 Gb/s. , 2007, Optics express.

[44]  Michael C. Parker,et al.  Is computation reversible , 2004, physics/0401077.

[45]  R Cuykendall Three-port reversible logic. , 1988, Applied optics.

[46]  Gianpiero Cattaneo,et al.  Fredkin gates for finite-valued reversible and conservative logics , 2002 .

[47]  Jun Sakaguchi,et al.  Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. , 2006, Optics express.

[48]  Xuezhe Zheng,et al.  Submilliwatt, ultrafast and broadband electro-optic silicon switches. , 2010, Optics express.

[49]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[50]  Jaromir Fiurasek,et al.  Linear optical Fredkin gate based on partial-SWAP gate , 2008, 0809.3228.

[51]  K. Zoiros,et al.  On the feasibility of ultrafast all-optical NAND gate using single quantum-dot semiconductor optical amplifier-based Mach–Zehnder interferometer , 2012 .

[52]  Tanay Chattopadhyay,et al.  Mach–Zehnder interferometer-based all-optical reversible logic gate , 2010 .

[53]  Alistair James Poustie,et al.  All-optical regenerative memory with full write/read capability , 1998 .

[54]  Yi-Hsin Lin,et al.  Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals , 2010 .

[55]  M W Haney,et al.  Two-bounce optical arbitrary permutation network. , 1998, Applied optics.

[56]  James Ladyman,et al.  The connection between logical and thermodynamic irreversibility , 2007 .

[57]  Parag K. Lala,et al.  Reversible-logic design with online testability , 2006, IEEE Transactions on Instrumentation and Measurement.

[58]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .