The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods
暂无分享,去创建一个
[1] G. Windisch. Two-point boundary value problems with piecewise constant coefficients: weak solution and exact discretization , 1998 .
[2] Schreiber,et al. Statistical properties of the eigenvalue spectrum of the three-dimensional Anderson Hamiltonian. , 1993, Physical review. B, Condensed matter.
[3] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[4] Reinhold Schneider,et al. Creation of sparse boundary element matrices for 2-D and axi-symmetric electrostatics problems using the bi-orthogonal Haar wavelet , 1998 .
[5] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[6] Hua Guo,et al. Benchmark calculations of bound states of HO2 via basic Lanczos algorithm , 1997 .
[7] M. Thess,et al. Numerische Simulation Auf Massiv Parallelen Rechnern , 2022 .
[8] Reinhold Schneider,et al. Multiscale compression of BEM equations for electrostatic systems , 1996 .
[9] V. Mehrmann,et al. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .
[10] Michael Schreiber,et al. Critical Behavior in the Two‐Dimensional Anderson Model of Localization with Random Hopping , 1998 .
[11] William H. Press,et al. Numerical Recipes: FORTRAN , 1988 .
[12] Ian A. Cavers. A Hybrid Tridiagonalization Algorithm for Symmetric Sparse Matrices , 1994 .
[13] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[14] Uwe Schrader. Convergence of asynchronous Jacobi–Newton‐iterations , 1996 .
[15] L G SleijpenGerard,et al. A Jacobi--Davidson Iteration Method for Linear Eigenvalue Problems , 1996 .
[16] Rudolf A. Römer,et al. Weak delocalization due to long-range interaction for two electrons in a random potential chain , 1998 .
[17] Thomas Apel,et al. Numerische Simulation Auf Massiv Parallelen Rechnern Anisotropic Mesh Reenement for Singularly Perturbed Reaction Diiusion Problems , 2007 .
[18] Bernhard Kramer,et al. Asymptotics of Universal Probability of Neighboring Level Spacings at the Anderson Transition , 1997 .
[19] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[20] V. Mehrmann,et al. Schur-like forms for matrix Lie groups, Lie algebras and Jordan algebras , 1999 .
[21] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[22] Schreiber,et al. Multifractal wave functions at the Anderson transition. , 1991, Physical review letters.
[23] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[24] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[25] P. M. Meijer,et al. A preconditioned Jacobi-Davidson method for solving large generalized eigenvalue problems , 1994 .
[26] Michael Schreiber,et al. Multifractal Characteristics of Electronic Wave Functions in Disordered Systems , 1993 .
[27] G. Kunert. Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes , 1998 .
[28] J. A. ScottyJanuary. An Evaluation of Software for Computing Eigenvalues of Sparse Nonsymmetric Matrices , 1996 .
[29] P. Anderson. Absence of Diffusion in Certain Random Lattices , 1958 .
[30] Michael Schreiber,et al. Fractal eigenstates in disordered systems , 1990 .
[31] Peter Benner,et al. A new method for computing the stable invariant subspace of areal Hamiltonian matrix orBreaking Van Loan ' s curse ? , 1997 .
[32] S. Nicaise,et al. The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges , 1998 .
[33] Y Saad,et al. Numerical methods for large eigenvalue problems : theory and algorithms , 1992 .
[34] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[35] Gerard L. G. Sleijpen,et al. A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .
[36] Xiaoye S. Li,et al. SuperLU Users'' Guide , 1997 .
[37] Wolfgang Dahmen,et al. Stable multiscale bases and local error estimation for elliptic problems , 1997 .
[38] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[39] Michael Schreiber,et al. No enhancement of the localization length for two interacting particles in a random potential , 1996 .
[40] M. Jung,et al. Numerische Simulation Auf Massiv Parallelen Rechnern , 2022 .
[41] Arnd Meyer,et al. Zur Berechnung von Spannungs- und Deformationsfeldern an Interface-Ecken im nichtlinearen Deformationsbereich auf Parallelrechnern , 1998 .
[42] M. Schreiber,et al. Level-spacing distributions of planar quasiperiodic tight-binding models , 1997, cond-mat/9710006.
[43] B. Kleemann,et al. Multiscale Methods for Boundary Integral Equations and Their Application to Boundary Value Problems in Scattering Theory and Geodesy , 1996 .
[44] Interpolation of non-smooth functions on anisotropic finite element meshes , 1999 .
[45] R. A. Römer,et al. The two-dimensional Anderson model of localization with random hopping , 1997 .
[46] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..
[47] Reinhold Schneider,et al. On the creation of sparse boundary element matrices for two dimensional electrostatics problems using the orthogonal Haar wavelet , 1997 .
[48] M. Schreiber,et al. Multifractal analysis of the metal-insulator transition in anisotropic systems , 1996, cond-mat/9609276.
[49] Peter Benner,et al. HAMEV and SQRED: Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices Using , 1998 .
[50] Schreiber,et al. Determination of the mobility edge in the Anderson model of localization in three dimensions by multifractal analysis. , 1995, Physical review. B, Condensed matter.
[51] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[52] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[53] Volker Mehrmann,et al. Where is the nearest non-regular pencil? , 1998 .
[54] Alexander Punnoose,et al. The Mott-Anderson transition in the disordered one-dimensional Hubbard model , 1997 .
[55] Bruce Hendrickson,et al. The Chaco user`s guide. Version 1.0 , 1993 .
[56] Thilo Penzl,et al. Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..
[57] B. Benhammouda. Rank-revealing top-down ULV factorizations , 1998 .
[58] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[59] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[60] L. Grabowsky. MPI-basierte Koppelrandkommunikation und Einfluß der Partitionierung im 3D-Fall , 1998 .
[61] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[62] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[63] B. M. Fulk. MATH , 1992 .