The Anderson Model of Localization: A Challenge for Modern Eigenvalue Methods

We present a comparative study of the application of modern eigenvalue algorithms to an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for the large, sparse, real, symmetric, and indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation of Cullum and Willoughby with the implicitly restarted Arnoldi method coupled with polynomial and several shift-and-invert convergence accelerators as well as with a sparse hybrid tridiagonalization method. We demonstrate that for our problem the Lanczos implementation is faster and more memory efficient than the other approaches. This seemingly innocuous problem presents a major challenge for all modern eigenvalue algorithms.

[1]  G. Windisch Two-point boundary value problems with piecewise constant coefficients: weak solution and exact discretization , 1998 .

[2]  Schreiber,et al.  Statistical properties of the eigenvalue spectrum of the three-dimensional Anderson Hamiltonian. , 1993, Physical review. B, Condensed matter.

[3]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[4]  Reinhold Schneider,et al.  Creation of sparse boundary element matrices for 2-D and axi-symmetric electrostatics problems using the bi-orthogonal Haar wavelet , 1998 .

[5]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[6]  Hua Guo,et al.  Benchmark calculations of bound states of HO2 via basic Lanczos algorithm , 1997 .

[7]  M. Thess,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern , 2022 .

[8]  Reinhold Schneider,et al.  Multiscale compression of BEM equations for electrostatic systems , 1996 .

[9]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[10]  Michael Schreiber,et al.  Critical Behavior in the Two‐Dimensional Anderson Model of Localization with Random Hopping , 1998 .

[11]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[12]  Ian A. Cavers A Hybrid Tridiagonalization Algorithm for Symmetric Sparse Matrices , 1994 .

[13]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[14]  Uwe Schrader Convergence of asynchronous Jacobi–Newton‐iterations , 1996 .

[15]  L G SleijpenGerard,et al.  A Jacobi--Davidson Iteration Method for Linear Eigenvalue Problems , 1996 .

[16]  Rudolf A. Römer,et al.  Weak delocalization due to long-range interaction for two electrons in a random potential chain , 1998 .

[17]  Thomas Apel,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern Anisotropic Mesh Reenement for Singularly Perturbed Reaction Diiusion Problems , 2007 .

[18]  Bernhard Kramer,et al.  Asymptotics of Universal Probability of Neighboring Level Spacings at the Anderson Transition , 1997 .

[19]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[20]  V. Mehrmann,et al.  Schur-like forms for matrix Lie groups, Lie algebras and Jordan algebras , 1999 .

[21]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[22]  Schreiber,et al.  Multifractal wave functions at the Anderson transition. , 1991, Physical review letters.

[23]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[24]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[25]  P. M. Meijer,et al.  A preconditioned Jacobi-Davidson method for solving large generalized eigenvalue problems , 1994 .

[26]  Michael Schreiber,et al.  Multifractal Characteristics of Electronic Wave Functions in Disordered Systems , 1993 .

[27]  G. Kunert Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes , 1998 .

[28]  J. A. ScottyJanuary An Evaluation of Software for Computing Eigenvalues of Sparse Nonsymmetric Matrices , 1996 .

[29]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[30]  Michael Schreiber,et al.  Fractal eigenstates in disordered systems , 1990 .

[31]  Peter Benner,et al.  A new method for computing the stable invariant subspace of areal Hamiltonian matrix orBreaking Van Loan ' s curse ? , 1997 .

[32]  S. Nicaise,et al.  The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges , 1998 .

[33]  Y Saad,et al.  Numerical methods for large eigenvalue problems : theory and algorithms , 1992 .

[34]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[35]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .

[36]  Xiaoye S. Li,et al.  SuperLU Users'' Guide , 1997 .

[37]  Wolfgang Dahmen,et al.  Stable multiscale bases and local error estimation for elliptic problems , 1997 .

[38]  B. Parlett,et al.  The Lanczos algorithm with selective orthogonalization , 1979 .

[39]  Michael Schreiber,et al.  No enhancement of the localization length for two interacting particles in a random potential , 1996 .

[40]  M. Jung,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern , 2022 .

[41]  Arnd Meyer,et al.  Zur Berechnung von Spannungs- und Deformationsfeldern an Interface-Ecken im nichtlinearen Deformationsbereich auf Parallelrechnern , 1998 .

[42]  M. Schreiber,et al.  Level-spacing distributions of planar quasiperiodic tight-binding models , 1997, cond-mat/9710006.

[43]  B. Kleemann,et al.  Multiscale Methods for Boundary Integral Equations and Their Application to Boundary Value Problems in Scattering Theory and Geodesy , 1996 .

[44]  Interpolation of non-smooth functions on anisotropic finite element meshes , 1999 .

[45]  R. A. Römer,et al.  The two-dimensional Anderson model of localization with random hopping , 1997 .

[46]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[47]  Reinhold Schneider,et al.  On the creation of sparse boundary element matrices for two dimensional electrostatics problems using the orthogonal Haar wavelet , 1997 .

[48]  M. Schreiber,et al.  Multifractal analysis of the metal-insulator transition in anisotropic systems , 1996, cond-mat/9609276.

[49]  Peter Benner,et al.  HAMEV and SQRED: Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices Using , 1998 .

[50]  Schreiber,et al.  Determination of the mobility edge in the Anderson model of localization in three dimensions by multifractal analysis. , 1995, Physical review. B, Condensed matter.

[51]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[52]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[53]  Volker Mehrmann,et al.  Where is the nearest non-regular pencil? , 1998 .

[54]  Alexander Punnoose,et al.  The Mott-Anderson transition in the disordered one-dimensional Hubbard model , 1997 .

[55]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[56]  Thilo Penzl,et al.  Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..

[57]  B. Benhammouda Rank-revealing top-down ULV factorizations , 1998 .

[58]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[59]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[60]  L. Grabowsky MPI-basierte Koppelrandkommunikation und Einfluß der Partitionierung im 3D-Fall , 1998 .

[61]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[62]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[63]  B. M. Fulk MATH , 1992 .