Quantitative static analysis of distributed systems
暂无分享,去创建一个
Chris Hankin | Herbert Wiklicky | Alessandra Di Pierro | C. Hankin | A. Pierro | H. Wiklicky | A. D. Pierro
[1] Emilio Tuosto,et al. The Klaim Project: Theory and Practice , 2003, Global Computing.
[2] D. Whittaker,et al. A Course in Functional Analysis , 1991, The Mathematical Gazette.
[3] Peter Buchholz,et al. Kronecker Based Matrix Representations for Large Markov Models , 2004, Validation of Stochastic Systems.
[4] Chris Hankin,et al. Continuous-Time Probabilistic KLAIM , 2005, SecCo.
[5] Richard V. Kadison,et al. Fundamentals of the Theory of Operator Algebras. Volume IV , 1998 .
[6] Simson Wassermann,et al. K‐THEORY AND C*‐ALGEBRAS: A FRIENDLY APPROACH , 1995 .
[7] Patrick Cousot,et al. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.
[8] Frederick J. Beutler,et al. The operator theory of the pseudo-inverse I. Bounded operators , 1965 .
[9] Catuscia PalamidessiDept. Probabilistic Asynchronous -calculus ? , 2000 .
[10] Patrick Cousot,et al. Abstract Interpretation and Application to Logic Programs , 1992, J. Log. Program..
[11] Corrado Priami,et al. Global Computing. Programming Environments, Languages, Security, and Analysis of Systems , 2003, Lecture Notes in Computer Science.
[12] Christopher Lance,et al. FUNDAMENTALS OF THE THEORY OF OPERATOR ALGEBRAS Volume I Elementary Theory, Volume II Advanced Theory , 1988 .
[13] Catuscia Palamidessi,et al. Probabilistic Asynchronous pi-Calculus , 2000, FoSSaCS.
[14] W. D. Ray,et al. Stochastic Models: An Algorithmic Approach , 1995 .
[15] Stephen Gilmore,et al. Performance Evaluation for Global Computation , 2003, Global Computing.
[16] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[17] S. R. Caradus,et al. Operator theory of the pseudo-inverse , 1974 .
[18] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[19] Chris Hankin,et al. Quantitative Relations and Approximate Process Equivalences , 2003, CONCUR.
[20] Chris Hankin,et al. Approximate non-interference , 2002, Proceedings 15th IEEE Computer Security Foundations Workshop. CSFW-15.
[21] Falko Bause,et al. Stochastic Petri Nets: An Introduction to the Theory , 2012, PERV.
[22] Rocco De Nicola,et al. KLAIM: A Kernel Language for Agents Interaction and Mobility , 1998, IEEE Trans. Software Eng..
[23] H. G. Dales,et al. BANACH ALGEBRAS AND THE GENERAL THEORY OF ""-ALGEBRAS Volume I Algebras and Banach Algebras (Encyclopedia of Mathematics and its Applications 49) By THEODORE W. PALMER: 794 pp., £60.00, ISBN 0 521 36637 2 (Cambridge University Press, 1994). , 1996 .
[24] D. Vere-Jones. Markov Chains , 1972, Nature.
[25] P. Fillmore,et al. A User's Guide to Operator Algebras , 1996 .
[26] Tommaso Toffoli,et al. Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.
[27] Flemming Nielson,et al. Principles of Program Analysis , 1999, Springer Berlin Heidelberg.
[28] Albert-László Barabási,et al. Error and attack tolerance of complex networks , 2000, Nature.
[29] Herbert Wiklicky,et al. Measuring the Precision of Abstract Interpretations , 2000, LOPSTR.
[30] Susanna Donatelli,et al. Superposed Stochastic Automata: A Class of Stochastic Petri Nets with Parallel Solution and Distributed State Space , 1993, Perform. Evaluation.
[31] Alan Bain. Stochastic Calculus , 2007 .
[32] Herbert Wiklicky,et al. Concurrent constraint programming: towards probabilistic abstract interpretation , 2000, PPDP '00.