Robust and Efficient Delaunay Triangulations of Points on Or Close to a Sphere

We propose two ways to compute the Delaunay triangulation of points on a sphere, or of rounded points close to a sphere, both based on the classic incremental algorithm initially designed for the plane. We use the so-called space of circles as mathematical background for this work. We present a fully robust implementation built upon existing generic algorithms provided by the Cgal library. The efficiency of the implementation is established by benchmarks.

[1]  M. Teillaud,et al.  The space of spheres, a geometric tool to unify duality results on Voronoi diagrams , 1992 .

[2]  Jean-Michel Muller,et al.  On the definition of ulp(x) , 2005 .

[3]  Amos Fiat,et al.  Algorithms - ESA 2009 , 2009, Lecture Notes in Computer Science.

[4]  J. Boissonnat,et al.  Algorithmic Geometry: Frontmatter , 1998 .

[5]  J. Davenport Editor , 1960 .

[6]  Pierre Pansu,et al.  The Space of Spheres , 1984 .

[7]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[8]  Chee-Keng Yap,et al.  Recent progress in exact geometric computation , 2005, J. Log. Algebraic Methods Program..

[9]  Kevin Buchin Constructing Delaunay Triangulations along Space-Filling Curves , 2009, ESA.

[10]  Kurt Mehlhorn,et al.  Classroom Examples of Robustness Problems in Geometric Computations , 2004, ESA.

[11]  Chee Yap,et al.  The exact computation paradigm , 1995 .

[12]  D. Du,et al.  Computing in Euclidean Geometry: (2nd Edition) , 1995 .

[13]  ScienceDirect Computational geometry : theory and applications. , 1991 .

[14]  Kevin Q. Brown Geometric transforms for fast geometric algorithms , 1979 .

[15]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[16]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[17]  H. S. M. Coxeter,et al.  A Geometrical Background for De Sitter's World , 1943 .

[18]  Robert J. Renka,et al.  Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere , 1997, TOMS.

[19]  Kenneth L. Clarkson,et al.  Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[20]  David Goldberg,et al.  What every computer scientist should know about floating-point arithmetic , 1991, CSUR.

[21]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[22]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[24]  Monique Teillaud,et al.  Computing 3D Periodic Triangulations , 2009, ESA.

[25]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[26]  K. Sugihara Laguerre Voronoi Diagram on the Sphere , 2002 .

[27]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[28]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[29]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[30]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[31]  Dan Halperin,et al.  Arrangements of geodesic arcs on the sphere , 2008, SCG '08.

[32]  Monique Teillaud,et al.  Design of the CGAL 3D Spherical Kernel and application to arrangements of circles on a sphere , 2009, Comput. Geom..

[33]  J. Eeckhout,et al.  Spatial Sorting , 2014, Journal of Political Economy.