Robust and Efficient Delaunay Triangulations of Points on Or Close to a Sphere
暂无分享,去创建一个
Monique Teillaud | Manuel Caroli | Sébastien Loriot | Pedro Machado Manhães de Castro | Olivier Rouiller | Camille Wormser | Camille Wormser | M. Teillaud | Sébastien Loriot | Manuel Caroli | Olivier Rouiller
[1] M. Teillaud,et al. The space of spheres, a geometric tool to unify duality results on Voronoi diagrams , 1992 .
[2] Jean-Michel Muller,et al. On the definition of ulp(x) , 2005 .
[3] Amos Fiat,et al. Algorithms - ESA 2009 , 2009, Lecture Notes in Computer Science.
[4] J. Boissonnat,et al. Algorithmic Geometry: Frontmatter , 1998 .
[5] J. Davenport. Editor , 1960 .
[6] Pierre Pansu,et al. The Space of Spheres , 1984 .
[7] D. Du,et al. Computing in Euclidean Geometry , 1995 .
[8] Chee-Keng Yap,et al. Recent progress in exact geometric computation , 2005, J. Log. Algebraic Methods Program..
[9] Kevin Buchin. Constructing Delaunay Triangulations along Space-Filling Curves , 2009, ESA.
[10] Kurt Mehlhorn,et al. Classroom Examples of Robustness Problems in Geometric Computations , 2004, ESA.
[11] Chee Yap,et al. The exact computation paradigm , 1995 .
[12] D. Du,et al. Computing in Euclidean Geometry: (2nd Edition) , 1995 .
[13] ScienceDirect. Computational geometry : theory and applications. , 1991 .
[14] Kevin Q. Brown. Geometric transforms for fast geometric algorithms , 1979 .
[15] Pierre Alliez,et al. Computational geometry algorithms library , 2008, SIGGRAPH '08.
[16] Kurt Mehlhorn,et al. Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..
[17] H. S. M. Coxeter,et al. A Geometrical Background for De Sitter's World , 1943 .
[18] Robert J. Renka,et al. Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere , 1997, TOMS.
[19] Kenneth L. Clarkson,et al. Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[20] David Goldberg,et al. What every computer scientist should know about floating-point arithmetic , 1991, CSUR.
[21] Mariette Yvinec,et al. Algorithmic geometry , 1998 .
[22] James Demmel,et al. IEEE Standard for Floating-Point Arithmetic , 2008 .
[24] Monique Teillaud,et al. Computing 3D Periodic Triangulations , 2009, ESA.
[25] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[26] K. Sugihara. Laguerre Voronoi Diagram on the Sphere , 2002 .
[27] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[28] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[29] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[30] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[31] Dan Halperin,et al. Arrangements of geodesic arcs on the sphere , 2008, SCG '08.
[32] Monique Teillaud,et al. Design of the CGAL 3D Spherical Kernel and application to arrangements of circles on a sphere , 2009, Comput. Geom..
[33] J. Eeckhout,et al. Spatial Sorting , 2014, Journal of Political Economy.