High pressure mediated physical properties of Hf2AB (A = Pb, Bi) via DFT calculations

[1]  Yanchun Zhou,et al.  Extension of MAX phases from ternary carbides and nitrides (X = C and N) to ternary borides (X = B, C and N): A general guideline , 2022, International Journal of Applied Ceramic Technology.

[2]  Rasheduzzaman,et al.  Physical properties of MAX phase Zr2PbC under pressure: Investigation via DFT scheme , 2021 .

[3]  J. Vencovský,et al.  Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin involvement: a cross-sectional and longitudinal study , 2021, Scientific Reports.

[4]  M. A. Ali,et al.  Ternary boride Hf3PB4: Insights into the physical properties of the hardest possible boride MAX phase , 2020 .

[5]  M. A. Ali,et al.  Physical properties of new MAX phase borides M2SB (M = Zr, Hf and Nb) in comparison with conventional MAX phase carbides M2SC (M = Zr, Hf and Nb): Comprehensive insights , 2020, 2009.04236.

[6]  H. Niu,et al.  Computational Prediction of Boron-Based MAX Phases and MXene Derivatives , 2020 .

[7]  D. Johrendt,et al.  The MAX phase borides Zr2SB and Hf2SB , 2020 .

[8]  Zheng-xin Yan,et al.  Structure stability, mechanical properties and thermal conductivity of the new hexagonal ternary phase Ti2InB2 under pressure , 2020 .

[9]  A. Gencer,et al.  Lattice dynamical and thermo-elastic properties of M2AlB (M = V, Nb, Ta) MAX phase borides , 2020 .

[10]  W. Smith Vacuum , 2020, Experimental Physics.

[11]  V. Natu,et al.  On the Chemical Diversity of the MAX Phases , 2019, Trends in Chemistry.

[12]  A. Chroneos,et al.  Structural, elastic, thermal and lattice dynamic properties of new 321 MAX phases , 2019, Computational Materials Science.

[13]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[14]  M. A. Ali,et al.  Recently synthesized (Zr1-xTix)2AlC (0 ≤ x ≤ 1) solid solutions: Theoretical study of the effects of M mixing on physical properties , 2017, 1709.09505.

[15]  N. Umezawa,et al.  Semimetallic Two-Dimensional TiB12: Improved Stability and Electronic Properties Tunable by Biaxial Strain , 2017 .

[16]  R. Arróyave,et al.  Structural, physical and mechanical properties of Ti3(Al1−xSix)C2 solid solution with x=0–1 , 2016 .

[17]  Kehui Wu,et al.  Experimental realization of two-dimensional boron sheets. , 2015, Nature chemistry.

[18]  K. Ostrikov,et al.  Physical properties of predicted Ti2CdN versus existing Ti2CdC MAX phase: An ab initio study , 2015, 1511.08632.

[19]  Pengfei Li,et al.  Computational analysis of stable hard structures in the Ti-B system. , 2015, ACS applied materials & interfaces.

[20]  S. Naqib,et al.  First-principles Study of Vickers Hardness and Thermodynamic Properties of Ti 3 SnC 2 Polymorphs , 2015, 1505.03666.

[21]  Yanchun Zhou,et al.  Theoretical prediction on mechanical and thermal properties of a promising thermal barrier material: Y4Al2O9 , 2015, Journal of Advanced Ceramics.

[22]  Y. Sakka,et al.  Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  L. Piraux,et al.  Solid solution effects in the Ti2Al(CxNy) MAX phases: Synthesis, microstructure, electronic structure and transport properties , 2014 .

[24]  N. Jahan,et al.  Sulvanite Compounds Cu3TMS4 (TM= V, Nb and Ta): Elastic, Electronic, Optical and Thermal Properties using First-principles Method , 2014, 1510.05564.

[25]  Ridwan Sakidja,et al.  A genomic approach to the stability, elastic, and electronic properties of the MAX phases , 2014 .

[26]  Michel W. Barsoum,et al.  MAX Phases: Properties of Machinable Ternary Carbides and Nitrides , 2013 .

[27]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[28]  S. Lofland,et al.  Epitaxial growth and electrical-transport properties of Ti7Si2C5 thin films synthesized by reactive sputter-deposition , 2011 .

[29]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[30]  Michel W. Barsoum,et al.  Elastic and Mechanical Properties of the MAX Phases , 2011 .

[31]  I. Shein,et al.  Elastic properties of antiperovskite-type Ni-rich nitrides MNNi3 (M=Zn, Cd, Mg, Al, Ga, In, Sn, Sb, Pd, Cu, Ag and Pt) as predicted from first-principles calculations , 2010 .

[32]  M. Barsoum,et al.  Theoretical investigations on the elastic and thermodynamic properties of Ti2AlC0.5N0.5 solid solution , 2009 .

[33]  S. Goumri‐Said,et al.  Steric effect on the M site of nanolaminate compounds M2SnC (M = Ti, Zr, Hf and Nb) , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  A. Bouhemadou Prediction study of structural and elastic properties under pressure effect of M2SnC (M = Ti, Zr, Nb, Hf) , 2008 .

[35]  E. García-Caurel,et al.  Dielectric properties of Ti2AlC and Ti2AlN MAX phases: The conductivity anisotropy , 2008 .

[36]  H. Gou,et al.  Pressure-induced incompressibility of ReC and effect of metallic bonding on its hardness , 2008 .

[37]  A. Bouhemadou,et al.  Prediction study of structural and elastic properties under the pressure effect of M2GaC (M=Ti,V,Nb,Ta) , 2007 .

[38]  S. Saxena,et al.  X-ray high-pressure study of Ti2AlN and Ti2AlC , 2006 .

[39]  Y. Zhou,et al.  Strengthening of Ti2AlC by substituting Ti with V , 2005 .

[40]  Ola Wilhelmsson,et al.  Growth and characterization of MAX-phase thin films , 2005 .

[41]  Hu Zhang,et al.  Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.9Al0.1C2 solid solution , 2004 .

[42]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[43]  M. Barsoum,et al.  Characterization of Ti4AlN3 , 2000 .

[44]  M. Barsoum,et al.  High-Resolution Transmission Electron Microscopy of Ti4AlN3, or Ti3Al2N2 Revisited , 1999 .

[45]  S. Louie,et al.  Electronic mechanism of hardness enhancement in transition-metal carbonitrides , 1998, Nature.

[46]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[47]  Jan Almlöf,et al.  General methods for geometry and wave function optimization , 1992 .

[48]  H. Marcus,et al.  Elastic constants versus melting temperature in metals , 1984 .

[49]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[50]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[51]  A. Götte,et al.  Metall , 1897 .

[52]  G. Surucu Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds , 2018 .

[53]  M. A. Ali,et al.  Elastic, thermodynamic and optical behavior of V2AC (A = Al, Ga) MAX phases , 2017 .

[54]  Von Hans Nowotny Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn , 1971 .

[55]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[56]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .